Exploiting the Short Message Service as a Control Channel in Challenged Network Environments

Earl Oliver

David R. Cheriton School of Computer Science University of Waterloo

September 15, 2008

イロト イポト イヨト イヨト

Outline

- 1 Introduction
 - Motivation
 - Objectives
- 2 Understanding SMS
 - Characteristics
 - Testbed
 - Analysis
- 3 Design
 - Protocol
 - Architecture
 - Implementation
 - Conclusions

<ロ> (四) (四) (三) (三) (三)

Outline

1 Introduction

- Motivation
- Objectives
- 2 Understanding SMS
 - Characteristics
 - Testbed
 - Analysis
- 3 Design
 - Protoco
 - Architecture
 - Implementation
 - Conclusions

・ 母 と ・ ヨ と ・ ヨ と

Outline

1 Introduction

- Motivation
- Objectives
- 2 Understanding SMS
 - Characteristics
 - Testbed
 - Analysis
- 3 Design
 - Protocol
 - Architecture
 - Implementation

Conclusions

Outline

- 1 Introduction
 - Motivation
 - Objectives
- 2 Understanding SMS
 - Characteristics
 - Testbed
 - Analysis
- 3 Design
 - Protocol
 - Architecture
 - Implementation

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Take home points

• Cellular network is highly erratic under bursty workloads.

- Characterized properties of the SMS network using bursty workloads using a variety of commondity hardware.
- Designed and built a robust data channel on top of SMS.

・ロン ・回 と ・ヨン ・ヨン

-3

Take home points

- Cellular network is highly erratic under bursty workloads.
- Characterized properties of the SMS network using bursty workloads using a variety of commondity hardware.

• Designed and built a robust data channel on top of SMS.

Take home points

- Cellular network is highly erratic under bursty workloads.
- Characterized properties of the SMS network using bursty workloads using a variety of commondity hardware.
- Designed and built a robust data channel on top of SMS.

イロト イポト イヨト イヨト

Motivation Objectives

Motivation

Growth of SMS

- Cellular networks are ubiquitous.
- Over 1 trillion SMS message sent in 2005.
- Projected to be 3.7 trillion SMS messages per year by 2012.
- Competition between carriers, growth of MMS, and data services are driving down prices*.
 - (India) smsjunction.com : Rs. 0.09 (\$0.002 USD) / message
 - (India) znisms.com : Rs. 0.28 (\$0.006 USD) / message
 - (US) AT&T : unlimited SMS messages for \$5 USD / month

* Except in Canada: no unlimited plans and charges for incoming messages.

イロト イポト イヨト イヨト

Motivation Objectives

Applications of SMS

Existing applications

- Messaging, e-voting/surveys, Internet search, e-commerce, system monitoring, notifications, etc.
 - Nearly always constrained to a single SMS message.

Can SMS be used to transport much larger quantities of data?

ヘロン 人間 とくほど 人間 とう

Motivation Objectives

Applications of SMS

Existing applications

- Messaging, e-voting/surveys, Internet search, e-commerce, system monitoring, notifications, etc.
 - Nearly always constrained to a single SMS message.

Can SMS be used to transport much larger quantities of data?

<ロ> (四) (四) (三) (三) (三)

Motivation Objectives

Applications of SMS

Existing applications

- Messaging, e-voting/surveys, Internet search, e-commerce, system monitoring, notifications, etc.
 - Nearly always constrained to a single SMS message.

Can SMS be used to transport much larger quantities of data?

ヘロン 人間と 人間と 人間と

Motivation Objectives

Existing solutions

- Enhanced Message Service (EMS)
 - Application layer extension to SMS.
 - Device support is poor.
- Cellular data services (GPRS/EDGE, EVDO)
 - Greatly superior as a data service.
 - Often two orders of magnitude cheaper.
 - Sparsely deployed in developing regions.
 - Mobile end-points often not reachable.

SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services	
	(TCP/IP)	

<ロ> (日) (日) (日) (日) (日)

-2

Motivation Objectives

Existing solutions

- Enhanced Message Service (EMS)
 - Application layer extension to SMS.
 - Device support is poor.
- Cellular data services (GPRS/EDGE, EVDO)
 - Greatly superior as a data service.
 - Often two orders of magnitude cheaper.
 - Sparsely deployed in developing regions.
 - Mobile end-points often not reachable.

SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services	
	(TCP/IP)	

<ロ> (四) (四) (三) (三) (三)

-2

Motivation Objectives

Existing solutions

- Enhanced Message Service (EMS)
 - Application layer extension to SMS.
 - Device support is poor.
- Cellular data services (GPRS/EDGE, EVDO)
 - Greatly superior as a data service.
 - Often two orders of magnitude cheaper.
 - Sparsely deployed in developing regions.
 - Mobile end-points often not reachable.

SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services	
	(TCP/IP)	

イロト イヨト イヨト イヨト

Motivation Objectives

Existing solutions

- Enhanced Message Service (EMS)
 - Application layer extension to SMS.
 - Device support is poor.
- Cellular data services (GPRS/EDGE, EVDO)
 - Greatly superior as a data service.
 - Often two orders of magnitude cheaper.
 - Sparsely deployed in developing regions.
 - Mobile end-points often not reachable.

SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services (TCP/IP)	

<ロ> (日) (日) (日) (日) (日)

Motivation Objectives

Existing solutions

- Enhanced Message Service (EMS)
 - Application layer extension to SMS.
 - Device support is poor.
- Cellular data services (GPRS/EDGE, EVDO)
 - Greatly superior as a data service.
 - Often two orders of magnitude cheaper.
 - Sparsely deployed in developing regions.
 - Mobile end-points often not reachable.

SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services	
	(TCP/IP)	

イロト イポト イヨト イヨト

Motivation Objectives

Claim: there are many practical applications for SMS.

Such as:

- Exchanging cryptographic keys.
- DTN routing table updates.
- Synchronous user creation at rural kiosks.
- And many more ...

Motivation Objectives

Claim: there are many practical applications for SMS.

Such as:

- Exchanging cryptographic keys.
- DTN routing table updates.
- Synchronous user creation at rural kiosks.
- And many more ...

Motivation Objectives

Claim: there are many practical applications for SMS.

Such as:

- Exchanging cryptographic keys.
- DTN routing table updates.
- Synchronous user creation at rural kiosks.
- And many more ...

Motivation Objectives

Claim: there are many practical applications for SMS.

Such as:

- Exchanging cryptographic keys.
- DTN routing table updates.
- Synchronous user creation at rural kiosks.
- And many more ...

イロン イボン イヨン 「正

Motivation Objectives

Claim: there are many practical applications for SMS.

Such as:

- Exchanging cryptographic keys.
- DTN routing table updates.
- Synchronous user creation at rural kiosks.
- And many more ...

イロト イポト イヨト イヨト

Motivation Objectives

Goal

To build a general purposed data channel on top of SMS.

Target data sizes (1 byte to 32 KB)		
SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services (TCP/IP)	

・ロト ・回ト ・ヨト ・ヨト 三星

Motivation Objectives

Objectives

- Fully utilize the capacity of the SMS network.
- Minimize monetary cost by reducing redundant messages.
- Reliable and robust to errors in hardware and the network.
- Must run on (or work with) a wide range of devices.
 - From current smartphones to previous generation/recycled cell phones.
- Compact and integrate seamlessly with existing mobile systems.

イロト イヨト イヨト イヨト

Motivation Objectives

Objectives

- Fully utilize the capacity of the SMS network.
- Minimize monetary cost by reducing redundant messages.
- Reliable and robust to errors in hardware and the network.
- Must run on (or work with) a wide range of devices.
 - From current smartphones to previous generation/recycled cell phones.
- Compact and integrate seamlessly with existing mobile systems.

イロト イヨト イヨト イヨト

Motivation Objectives

Objectives

- Fully utilize the capacity of the SMS network.
- Minimize monetary cost by reducing redundant messages.
- Reliable and robust to errors in hardware and the network.
- Must run on (or work with) a wide range of devices.
 - From current smartphones to previous generation/recycled cell phones.
- Compact and integrate seamlessly with existing mobile systems.

<ロ> (四) (四) (三) (三) (三)

Motivation Objectives

Objectives

- Fully utilize the capacity of the SMS network.
- Minimize monetary cost by reducing redundant messages.
- Reliable and robust to errors in hardware and the network.
- Must run on (or work with) a wide range of devices.
 - From current smartphones to previous generation/recycled cell phones.
- Compact and integrate seamlessly with existing mobile systems.

イロト イポト イヨト イヨト

Motivation Objectives

Objectives

- Fully utilize the capacity of the SMS network.
- Minimize monetary cost by reducing redundant messages.
- Reliable and robust to errors in hardware and the network.
- Must run on (or work with) a wide range of devices.
 - From current smartphones to previous generation/recycled cell phones.
- Compact and integrate seamlessly with existing mobile systems.

イロト イポト イヨト イヨト

Characteristics Testbed Analysis

How does the SMS network behave?

Previous work

- Examined traces of 59 million messages exchanged in India over a 3 week period. (Zerfos et al.)
- Trace covered approximately 10% of India's mobile subscribers (at the time).
- Examines SMS from a macro perspective.
- Does not examine mass message senders as an isolated group.
- We need to examine the SMS network from a micro perspective.
 - Focus on traffic patterns that differ significantly from normal human generated traffic.

Characteristics Testbed Analysis

How does the SMS network behave?

Previous work

- Examined traces of 59 million messages exchanged in India over a 3 week period. (Zerfos et al.)
- Trace covered approximately 10% of India's mobile subscribers (at the time).
- Examines SMS from a macro perspective.
- Does not examine mass message senders as an isolated group.
- We need to examine the SMS network from a micro perspective.
 - Focus on traffic patterns that differ significantly from normal human generated traffic.

Characteristics Testbed Analysis

How does the SMS network behave?

Previous work

- Examined traces of 59 million messages exchanged in India over a 3 week period. (Zerfos et al.)
- Trace covered approximately 10% of India's mobile subscribers (at the time).
- Examines SMS from a macro perspective.
- Does not examine mass message senders as an isolated group.
- We need to examine the SMS network from a micro perspective.
 - Focus on traffic patterns that differ significantly from normal human generated traffic.

・ロト ・回ト ・ヨト ・ヨト

-3

Characteristics Testbed Analysis

How does the SMS network behave?

Previous work

- Examined traces of 59 million messages exchanged in India over a 3 week period. (Zerfos et al.)
- Trace covered approximately 10% of India's mobile subscribers (at the time).
- Examines SMS from a macro perspective.
- Does not examine mass message senders as an isolated group.
- We need to examine the SMS network from a micro perspective.
 - Focus on traffic patterns that differ significantly from normal human generated traffic.

・ロト ・回ト ・ヨト ・ヨト

Characteristics Testbed Analysis

How does the SMS network behave?

Previous work

- Examined traces of 59 million messages exchanged in India over a 3 week period. (Zerfos et al.)
- Trace covered approximately 10% of India's mobile subscribers (at the time).
- Examines SMS from a macro perspective.
- Does not examine mass message senders as an isolated group.
- We need to examine the SMS network from a micro perspective.
 - Focus on traffic patterns that differ significantly from normal human generated traffic.

Characteristics Testbed Analysis

How does the SMS network behave?

Previous work

- Examined traces of 59 million messages exchanged in India over a 3 week period. (Zerfos et al.)
- Trace covered approximately 10% of India's mobile subscribers (at the time).
- Examines SMS from a macro perspective.
- Does not examine mass message senders as an isolated group.
- We need to examine the SMS network from a micro perspective.
 - Focus on traffic patterns that differ significantly from normal human generated traffic.

イロト イポト イヨト イヨト

Characteristics Testbed Analysis

Understanding the characteristics of SMS

• Transmission rate

- Signal strength
- Medium contention
- Communication latency with the device circuitry.

Delay

- Propagation delay
- Queuing delays throughout the network
- Transmission delay
- Network may throttle or artificially delay messages.
- Loss rate
 - Transmission failure
 - Network congestion
 - Data corruption
 - Message may also expire if the receiver is not available.

• Other properties: transmission failure rate and reordering

Characteristics Testbed Analysis

Understanding the characteristics of SMS

• Transmission rate

- Signal strength
- Medium contention
- Communication latency with the device circuitry.
- Delay
 - Propagation delay
 - Queuing delays throughout the network
 - Transmission delay
 - Network may throttle or artificially delay messages.

Loss rate

- Transmission failure
- Network congestion
- Data corruption
- Message may also expire if the receiver is not available.

• Other properties: transmission failure rate and reordering
Characteristics Testbed Analysis

Understanding the characteristics of SMS

• Transmission rate

- Signal strength
- Medium contention
- Communication latency with the device circuitry.
- Delay
 - Propagation delay
 - Queuing delays throughout the network
 - Transmission delay
 - Network may throttle or artificially delay messages.
- Loss rate
 - Transmission failure
 - Network congestion
 - Data corruption
 - Message may also expire if the receiver is not available.

• Other properties: transmission failure rate and reordering

Characteristics Testbed Analysis

Understanding the characteristics of SMS

• Transmission rate

- Signal strength
- Medium contention
- Communication latency with the device circuitry.
- Delay
 - Propagation delay
 - Queuing delays throughout the network
 - Transmission delay
 - Network may throttle or artificially delay messages.
- Loss rate
 - Transmission failure
 - Network congestion
 - Data corruption
 - Message may also expire if the receiver is not available.
- Other properties: transmission failure rate and reordering

Characteristics Testbed Analysis

Properties could be affected by:

- Day of week (ex. Saturday night more congested than Tuesday morning).
- Time of day.
- Number of successive messages sent.
- Device used.

Characteristics Testbed Analysis

Properties could be affected by:

- Day of week (ex. Saturday night more congested than Tuesday morning).
- Time of day.
- Number of successive messages sent.
- Device used.

イロン イボン イヨン 一座

Characteristics Testbed Analysis

Properties could be affected by:

- Day of week (ex. Saturday night more congested than Tuesday morning).
- Time of day.
- Number of successive messages sent.

• Device used.

ヘロン 人間と 人間と 人間と

-2

Characteristics Testbed Analysis

Properties could be affected by:

- Day of week (ex. Saturday night more congested than Tuesday morning).
- Time of day.
- Number of successive messages sent.
- Device used.

<ロ> (四) (四) (三) (三) (三)

Characteristics Testbed Analysis

Characterizing SMS

Testbed

- Two testbed configurations that represent common usage scenarios:
 - Messages exchanged between cell phones tethered to commodity PCs.
 - Messages exchanged between smartphones.

ヘロン 人間と 人間と 人間と

-2

Characteristics Testbed Analysis

Testbed

Tethered cell phones

- Recycled Nokia cell phones connected over USB.
- Gammu used to communicate with Nokia phones over FBUS protocol.
- Tests controlled over LAN control channel.
- Time synchronized to the university's NTP server.
- Test consists of exchanging bursts of 10 messages per hour, 24 hours per day, over a 7 day period.
- Hourly success/failure notifications sent via email.
 - Transmission failures and losses were verified manually.

Characteristics Testbed Analysis

Testbed

Tethered cell phones

- Recycled Nokia cell phones connected over USB.
- Gammu used to communicate with Nokia phones over FBUS protocol.
- Tests controlled over LAN control channel.
- Time synchronized to the university's NTP server.
- Test consists of exchanging bursts of 10 messages per hour, 24 hours per day, over a 7 day period.
- Hourly success/failure notifications sent via email.
 - Transmission failures and losses were verified manually.

Characteristics Testbed Analysis

Testbed

Tethered cell phones

- Recycled Nokia cell phones connected over USB.
- Gammu used to communicate with Nokia phones over FBUS protocol.
- Tests controlled over LAN control channel.
- Time synchronized to the university's NTP server.
- Test consists of exchanging bursts of 10 messages per hour, 24 hours per day, over a 7 day period.
- Hourly success/failure notifications sent via email.
 - Transmission failures and losses were verified manually.

Characteristics Testbed Analysis

Testbed

Tethered cell phones

- Recycled Nokia cell phones connected over USB.
- Gammu used to communicate with Nokia phones over FBUS protocol.
- Tests controlled over LAN control channel.
- Time synchronized to the university's NTP server.
- Test consists of exchanging bursts of 10 messages per hour, 24 hours per day, over a 7 day period.
- Hourly success/failure notifications sent via email.
 - Transmission failures and losses were verified manually.

Characteristics Testbed Analysis

Testbed

Tethered cell phones

- Recycled Nokia cell phones connected over USB.
- Gammu used to communicate with Nokia phones over FBUS protocol.
- Tests controlled over LAN control channel.
- Time synchronized to the university's NTP server.
- Test consists of exchanging bursts of 10 messages per hour, 24 hours per day, over a 7 day period.
- Hourly success/failure notifications sent via email.

イロン イ部ン イヨン イヨン 三連

Characteristics Testbed Analysis

Testbed

Tethered cell phones

- Recycled Nokia cell phones connected over USB.
- Gammu used to communicate with Nokia phones over FBUS protocol.
- Tests controlled over LAN control channel.
- Time synchronized to the university's NTP server.
- Test consists of exchanging bursts of 10 messages per hour, 24 hours per day, over a 7 day period.
- Hourly success/failure notifications sent via email.
 - Transmission failures and losses were verified manually.

イロン イヨン イヨン イヨン

Characteristics Testbed Analysis

Testbed

・ロト ・回ト ・ヨト ・ヨト

-2

Characteristics Testbed Analysis

Testbed

Drawbacks of using tethered cell phones

- Polling delays
 - Sending: messages copied to phone's "outbox", Gammu polls to verify that message is sent.
 - Receiving: Gammu polls phone's "inbox" to retrieve messages.
- Unstable hardware
 - Communication with phone frequently broken.
 - Software resets required.
- Cell phone is a black box.

・ロン ・回 と ・ヨン ・ヨン

-2

Characteristics Testbed Analysis

Testbed

Drawbacks of using tethered cell phones

- Polling delays
 - Sending: messages copied to phone's "outbox", Gammu polls to verify that message is sent.
 - Receiving: Gammu polls phone's "inbox" to retrieve messages.
- Unstable hardware
 - Communication with phone frequently broken.
 - Software resets required.
- Cell phone is a black box.

イロト イヨト イヨト イヨト

Characteristics Testbed Analysis

Testbed

Drawbacks of using tethered cell phones

- Polling delays
 - Sending: messages copied to phone's "outbox", Gammu polls to verify that message is sent.
 - Receiving: Gammu polls phone's "inbox" to retrieve messages.
- Unstable hardware
 - Communication with phone frequently broken.
 - Software resets required.
- Cell phone is a black box.

イロト イヨト イヨト イヨト

Characteristics Testbed Analysis

Testbed

Drawbacks of using tethered cell phones

- Polling delays
 - Sending: messages copied to phone's "outbox", Gammu polls to verify that message is sent.
 - Receiving: Gammu polls phone's "inbox" to retrieve messages.
- Unstable hardware
 - Communication with phone frequently broken.
 - Software resets required.

• Cell phone is a black box.

<ロ> (四) (四) (三) (三) (三)

Characteristics Testbed Analysis

Testbed

Drawbacks of using tethered cell phones

- Polling delays
 - Sending: messages copied to phone's "outbox", Gammu polls to verify that message is sent.
 - Receiving: Gammu polls phone's "inbox" to retrieve messages.
- Unstable hardware
 - Communication with phone frequently broken.
 - Software resets required.
- Cell phone is a black box.

<ロ> (四) (四) (三) (三) (三)

Characteristics Testbed Analysis

Testbed

Smartphones

- Embedded environment created tighter integration between test driver and radio.
- Remove polling delays by using event driven APIs.
- Correlate signal strength, base station hopping with SMS measurements.
- Stable and reliable testbed (no hardware crashes, resets, etc.)

Characteristics Testbed Analysis

Testbed

Smartphones

- Embedded environment created tighter integration between test driver and radio.
- Remove polling delays by using event driven APIs.
- Correlate signal strength, base station hopping with SMS measurements.
- Stable and reliable testbed (no hardware crashes, resets, etc.)

Characteristics Testbed Analysis

Testbed

Smartphones

- Embedded environment created tighter integration between test driver and radio.
- Remove polling delays by using event driven APIs.
- Correlate signal strength, base station hopping with SMS measurements.
- Stable and reliable testbed (no hardware crashes, resets, etc.)

Characteristics Testbed Analysis

Testbed

Smartphones

- Embedded environment created tighter integration between test driver and radio.
- Remove polling delays by using event driven APIs.
- Correlate signal strength, base station hopping with SMS measurements.
- Stable and reliable testbed (no hardware crashes, resets, etc.)

Characteristics Testbed Analysis

Test setup

• Unidirectional and bidirectional transmission.

- Devices time synchronized to the GSM cellular network.
- Exchanges bursts of 10,20,40,80 messages between devices.
- Experiments conducted during throughout early Friday through to Monday evening.

Characteristics Testbed Analysis

Test setup

- Unidirectional and bidirectional transmission.
- Devices time synchronized to the GSM cellular network.
- Exchanges bursts of 10,20,40,80 messages between devices.
- Experiments conducted during throughout early Friday through to Monday evening.

Characteristics Testbed Analysis

Test setup

- Unidirectional and bidirectional transmission.
- Devices time synchronized to the GSM cellular network.
- Exchanges bursts of 10,20,40,80 messages between devices.
- Experiments conducted during throughout early Friday through to Monday evening.

Characteristics Testbed Analysis

Test setup

- Unidirectional and bidirectional transmission.
- Devices time synchronized to the GSM cellular network.
- Exchanges bursts of 10,20,40,80 messages between devices.
- Experiments conducted during throughout early Friday through to Monday evening.

イロト イポト イヨト イヨト

Characteristics Testbed Analysis

Analysis

Summary

- Exchanged over 2400 SMS messages between devices.
- 98.5% transmission success rate.
- Contrary to expectations, the day of the week, time of the day, and burst size had no effect on results.

イロン イ部ン イヨン イヨン 三連

Characteristic Testbed Analysis

Analysis (continued)

Transmission rate

- Highly consistent for unidirectional traffic.
 - Mean: 4.03 sec (smartphone), 5.59 sec (cell phone)
- Bidirectional traffic has a significant effect.
 - Mean: 9.59 sec (smartphone)
 - ALOHA delays on shared random access channel.

Configuration	Mean	Minimum	Maximum	Median	Std. dev.
Tethered cell phone	5.59	4.19	29.23	5.63	0.76
Smartphone	4.03	2.98	39.36	3.34	3.81
Smartphone (bidirectional)	9.59	2.24	67.90	3.41	14.10

イロン イヨン イヨン イヨン

Characteristic Testbed Analysis

Analysis (continued)

Transmission rate

- Highly consistent for unidirectional traffic.
 - Mean: 4.03 sec (smartphone), 5.59 sec (cell phone)
- Bidirectional traffic has a significant effect.
 - Mean: 9.59 sec (smartphone)
 - ALOHA delays on shared random access channel.

Configuration	Mean	Minimum	Maximum	Median	Std. dev.
Tethered cell phone	5.59	4.19	29.23	5.63	0.76
Smartphone	4.03	2.98	39.36	3.34	3.81
Smartphone (bidirectional)	9.59	2.24	67.90	3.41	14.10

イロト イヨト イヨト イヨト

Characteristics Testbed Analysis

Analysis (continued)

Transmission time CDF

Earl Oliver, University of Waterloo Mobicom 2008, W

Mobicom 2008, Workshop on Challenged Networks

・ロン ・回 と ・ ヨ と ・ ヨ と …

Characteristics Testbed Analysis

Analysis (continued)

Loss

Loss rate was consistently less than 4%.

- Message duplication
 - Cell phone: 3.1%
 - Duplicates caused by communication failures with phone.
 - FBUS protocol frequently enters an inconsistent state.
 - Smartphone: 0.8%
 - Message duplication almost always the result of a drop in signal and cell tower change.

イロン スロン スロン スロン

Characteristics Testbed Analysis

Analysis (continued)

Loss

- Loss rate was consistently less than 4%.
- Message duplication
 - Cell phone: 3.1%
 - Duplicates caused by communication failures with phone.
 - FBUS protocol frequently enters an inconsistent state.
 - Smartphone: 0.8%
 - Message duplication almost always the result of a drop in signal and cell tower change.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Characteristics Testbed Analysis

Analysis (continued)

Loss

- Loss rate was consistently less than 4%.
- Message duplication
 - Cell phone: 3.1%
 - Duplicates caused by communication failures with phone.
 - FBUS protocol frequently enters an inconsistent state.
 - Smartphone: 0.8%
 - Message duplication almost always the result of a drop in signal and cell tower change.

Characteristics Testbed Analysis

Analysis (continued)

Reordering

• Reordering is highly dependent on device.

- Cell phone: 2.53%
- Unidirectional smartphone: 31.72%
- Bidirectional smartphone: 41.95%
- Message reordering almost always the result of a cell tower change.
 - (BlackBerry is unusually sensitive to decreased signal strength)

・ロン ・回 と ・ ヨ と ・ ヨ と …

Characteristics Testbed Analysis

Analysis (continued)

Reordering

• Reordering is highly dependent on device.

- Cell phone: 2.53%
- Unidirectional smartphone: 31.72%
- Bidirectional smartphone: 41.95%
- Message reordering almost always the result of a cell tower change.

(BlackBerry is unusually sensitive to decreased signal strength)

・ロン ・回 と ・ ヨ と ・ ヨ と …
Characteristic Testbed Analysis

Analysis (continued)

Reordering

- Reordering is highly dependent on device.
 - Cell phone: 2.53%
 - Unidirectional smartphone: 31.72%
 - Bidirectional smartphone: 41.95%
- Message reordering almost always the result of a cell tower change.
 - (BlackBerry is unusually sensitive to decreased signal strength)

イロト イポト イヨト イヨト

Characteristic Testbed Analysis

Analysis (continued)

Delay

- Highly variable (high standard deviation).
- Dependent on the hardware used.
- Bidirectional traffic had a significant impact on delay.
 - Channel contention at the edges of the network.

Configuration	Mean	Minimum	Maximum	Median	Std. dev.
Tethered cell phone	289.31	3.19	14534.32	14.00	1247.83
Smartphone	52.22	0.616	388.87	9.66	72.25
Smartphone (bidirectional)		1.98	645.56	173.44	174.19

イロン イボン イヨン 一座

Characteristic Testbed Analysis

Analysis (continued)

Delay

- Highly variable (high standard deviation).
- Dependent on the hardware used.
- Bidirectional traffic had a significant impact on delay.
 - Channel contention at the edges of the network.

Configuration	Mean	Minimum	Maximum	Median	Std. dev.
Tethered cell phone	289.31	3.19	14534.32	14.00	1247.83
Smartphone	52.22	0.616	388.87	9.66	72.25
Smartphone (bidirectional)		1.98	645.56	173.44	174.19

イロン イボン イヨン 一座

Characteristic Testbed Analysis

Analysis (continued)

Delay

- Highly variable (high standard deviation).
- Dependent on the hardware used.
- Bidirectional traffic had a significant impact on delay.
 - Channel contention at the edges of the network.

Configuration	Mean	Minimum	Maximum	Median	Std. dev.
Tethered cell phone	289.31	3.19	14534.32	14.00	1247.83
Smartphone	52.22	0.616	388.87	9.66	72.25
Smartphone (bidirectional)		1.98	645.56	173.44	174.19

Characteristic Testbed Analysis

Analysis (continued)

Delay

- Highly variable (high standard deviation).
- Dependent on the hardware used.
- Bidirectional traffic had a significant impact on delay.
 - Channel contention at the edges of the network.

Configuration	Mean	Minimum	Maximum	Median	Std. dev.
Tethered cell phone	289.31	3.19	14534.32	14.00	1247.83
Smartphone	52.22	0.616	388.87	9.66	72.25
Smartphone (bidirectional)	203.02	1.98	645.56	173.44	174.19

Characteristics Testbed Analysis

Analysis (continued)

Message delay CDF

Earl Oliver, University of Waterloo

Mobicom 2008, Workshop on Challenged Networks

Characteristics Testbed Analysis

Analysis (continued)

The effect of delay

• Given a relatively consistent transmission time (with no delay between message transmissions), message have a high inter-arrival time.

Configuration	Mean	Minimum	Maximum	Median	Std. dev.
Tethered cell phone	67.32	0.0	14511.02	1.68	591.84
Smartphone	8.51	0.28	92.90	3.51	16.91
Smartphone (bidirectional)	28.14	2.90	274.08	5.59	39.97

イロン イヨン イヨン イヨン

-2

Characteristics Testbed Analysis

Example message flow

Unidirectional, 20 messages

Earl Oliver, University of Waterloo

Mobicom 2008, Workshop on Challenged Networks

Characteristics Testbed Analysis

Example message flow

Unidirectional, 40 messages

Earl Oliver, University of Waterloo

Mobicom 2008, Workshop on Challenged Networks

Characteristics Testbed Analysis

Example message flow

Bidirectional, 10 messages

Earl Oliver, University of Waterloo

Mobicom 2008, Workshop on Challenged Networks

Protocol Architecture Implementation

Design

Motivating criteria

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Low loss rate messages are rarely lost.
- Variable inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

Protocol Architecture Implementation

Design

Motivating criteria

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Low loss rate messages are rarely lost.
- Variable inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

Protocol Architecture Implementation

Design

Motivating criteria

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Low loss rate messages are rarely lost.
- Variable inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

Protocol Architecture Implementation

Design

Motivating criteria

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Low loss rate messages are rarely lost.
- Variable inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

Protocol Architecture Implementation

Design

Motivating criteria

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Low loss rate messages are rarely lost.
- Variable inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

イロト イヨト イヨト イヨト

Protocol Architecture Implementation

Design

Motivating criteria

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Low loss rate messages are rarely lost.
- Variable inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

イロト イヨト イヨト イヨト

Protocol Architecture Implementation

Protocol

Message format

- Message headers range from 2 3 bytes in length.
 - Maximize the fixed 140 byte message payload.
 - Details are in the paper.
- Base 64 mode to support
 - Reduces effective payload to 120 bytes.
 - Supports communication with a wide range of devices (that only accept printable ASCII characters).
- Details are in the paper.

イロト イヨト イヨト イヨト

-2

Earl Oliver, University of Waterloo Mobicom 2008, Workshop on Challenged Networks

Protocol Architecture Implementation

Protocol

Message format

- Message headers range from 2 3 bytes in length.
 - Maximize the fixed 140 byte message payload.
 - Details are in the paper.
- Base 64 mode to support
 - Reduces effective payload to 120 bytes.
 - Supports communication with a wide range of devices (that only accept printable ASCII characters).
- Details are in the paper.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

-

Protocol Architecture Implementation

Protocol (continued)

Flow control and error control

- Experimented with SMART and sliding window flow control.
- NETBLT

Advantages of NETBLT

- Sender may transmit a continuous series of messages since burst size has no effect on transmission rate, delay, or loss.
- Bidirectional traffic is minimized through the use of a cumulative ack.
- Cumulative selective ack is tolerant to message reordering, random losses, and variable inter-arrival times.
- Low SMS loss rate requires few acks to be sent.

<ロ> (四) (四) (三) (三) (三)

Protocol Architecture Implementation

Protocol (continued)

Flow control and error control

- Experimented with SMART and sliding window flow control.
- NETBLT

Advantages of NETBLT

- Sender may transmit a continuous series of messages since burst size has no effect on transmission rate, delay, or loss.
- Bidirectional traffic is minimized through the use of a cumulative ack.
- Cumulative selective ack is tolerant to message reordering, random losses, and variable inter-arrival times.
- Low SMS loss rate requires few acks to be sent.

<ロ> (四) (四) (三) (三) (三)

Protocol Architecture Implementation

Protocol (continued)

Flow control and error control

- Experimented with SMART and sliding window flow control.
- NETBLT

Advantages of NETBLT

- Sender may transmit a continuous series of messages since burst size has no effect on transmission rate, delay, or loss.
- Bidirectional traffic is minimized through the use of a cumulative ack.
- Cumulative selective ack is tolerant to message reordering, random losses, and variable inter-arrival times.
- Low SMS loss rate requires few acks to be sent.

・ロト ・回ト ・ヨト ・ヨト

Protocol Architecture Implementation

Protocol (continued)

Flow control and error control

- Experimented with SMART and sliding window flow control.
- NETBLT

Advantages of NETBLT

- Sender may transmit a continuous series of messages since burst size has no effect on transmission rate, delay, or loss.
- Bidirectional traffic is minimized through the use of a cumulative ack.
- Cumulative selective ack is tolerant to message reordering, random losses, and variable inter-arrival times.
- Low SMS loss rate requires few acks to be sent.

・ロト ・回ト ・ヨト ・ヨト

Protocol Architecture Implementation

Protocol (continued)

Flow control and error control

- Experimented with SMART and sliding window flow control.
- NETBLT

Advantages of NETBLT

- Sender may transmit a continuous series of messages since burst size has no effect on transmission rate, delay, or loss.
- Bidirectional traffic is minimized through the use of a cumulative ack.
- Cumulative selective ack is tolerant to message reordering, random losses, and variable inter-arrival times.
- Low SMS loss rate requires few acks to be sent.

イロト イヨト イヨト イヨト

Protocol Architecture Implementation

Protocol (continued)

Flow control and error control

- Experimented with SMART and sliding window flow control.
- NETBLT

Advantages of NETBLT

- Sender may transmit a continuous series of messages since burst size has no effect on transmission rate, delay, or loss.
- Bidirectional traffic is minimized through the use of a cumulative ack.
- Cumulative selective ack is tolerant to message reordering, random losses, and variable inter-arrival times.
- Low SMS loss rate requires few acks to be sent.

イロト イポト イヨト イヨト

-2

Protocol Architecture Implementation

Architecture

- Extensible architecture that allows for integration into existing mobile systems.
- Device *plug-ins* supported provided through *SMS Handler* API.
- Detailed architectural description in the paper

・ロン ・回 と ・ ヨ と ・ ヨ と …

Protocol Architecture Implementation

Architecture

- Extensible architecture that allows for integration into existing mobile systems.
- Device *plug-ins* supported provided through *SMS Handler* API.
- Detailed architectural description in the paper

Earl Oliver, University of Waterloo

Mobicom 2008, Workshop on Challenged Networks

・ロン ・回 と ・ ヨ と ・ ヨ と …

Protocol Architecture Implementation

Architecture

- Extensible architecture that allows for integration into existing mobile systems.
- Device *plug-ins* supported provided through *SMS Handler* API.
- Detailed architectural description in the paper.

Protocol Architecture Implementation

Implementation and evaluation

Summary

- The SMS-NIC is implemented in Java Micro Edition.
- CLDC compliant.
- Runs on WIDE range of existing mobile cell phones and smartphones.

Sample workloads

	2 KB RSA key (16 msgs)	4 KB BLOB (31 msgs)
SMS-NIC		

• Implementation details are in the paper.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Protocol Architecture Implementation

Implementation and evaluation

Summary

- The SMS-NIC is implemented in Java Micro Edition.
- CLDC compliant.
- Runs on WIDE range of existing mobile cell phones and smartphones.

Sample workloads

	2 KB RSA key (16 msgs)	4 KB BLOB (31 msgs)
SMS-NIC		

• Implementation details are in the paper.

ヘロン 人間と 人間と 人間と

Protocol Architecture Implementation

Implementation and evaluation

Summary

- The SMS-NIC is implemented in Java Micro Edition.
- CLDC compliant.
- Runs on WIDE range of existing mobile cell phones and smartphones.

Sample workloads

	GPS position (1 msg)	2 KB RSA key (16 msgs)	4 KB BLOB (31 msgs)
SMS-NIC	37.32 sec	97.23 sec	212.11 sec

• Implementation details are in the paper.

イロト イポト イヨト イヨト

Protocol Architecture Implementation

Implementation and evaluation

Summary

- The SMS-NIC is implemented in Java Micro Edition.
- CLDC compliant.
- Runs on WIDE range of existing mobile cell phones and smartphones.

Sample workloads

	GPS position (1 msg)	2 KB RSA key (16 msgs)	4 KB BLOB (31 msgs)
SMS-NIC	37.32 sec	97.23 sec	212.11 sec

• Implementation details are in the paper.

イロト イヨト イヨト イヨト

-2

Summary of work

- Characterized the behaviour of SMS under continuous, bursty workloads.
- Designed and implemented a reliable and robust data channel built on top of SMS.
- Through an extensible architecture the SMS-NIC runs on or works with a wide range of mobile devices.

Using the SMS-NIC

Available for download

- SMS-NIC source code and measurement scripts available at: http://blizzard.cs.uwaterloo.ca/eaoliver/sms/
- Includes plug-ins for CLDC enabled devices and Gammu.
- Apache open source license.

Current user

- KioskNet
 - http://blizzard.cs.uwaterloo.ca/kiosknet/
- Nearby Friend http://crysp.uwaterloo.ca/software/nearbyfriend/
- PaperSpeckle

Using the SMS-NIC

Available for download

- SMS-NIC source code and measurement scripts available at: http://blizzard.cs.uwaterloo.ca/eaoliver/sms/
- Includes plug-ins for CLDC enabled devices and Gammu.
- Apache open source license.

Current user

- KioskNet
 - http://blizzard.cs.uwaterloo.ca/kiosknet/
- Nearby Friend http://crysp.uwaterloo.ca/software/nearbyfriend,
- PaperSpeckle

Using the SMS-NIC

Available for download

- SMS-NIC source code and measurement scripts available at: http://blizzard.cs.uwaterloo.ca/eaoliver/sms/
- Includes plug-ins for CLDC enabled devices and Gammu.
- Apache open source license.

Current user

KioskNet

http://blizzard.cs.uwaterloo.ca/kiosknet/

- Nearby Friend http://crysp.uwaterloo.ca/software/nearbyfriend
- PaperSpeckle

Using the SMS-NIC

Available for download

- SMS-NIC source code and measurement scripts available at: http://blizzard.cs.uwaterloo.ca/eaoliver/sms/
- Includes plug-ins for CLDC enabled devices and Gammu.
- Apache open source license.

Current user

KioskNet

http://blizzard.cs.uwaterloo.ca/kiosknet/

- Nearby Friend http://crysp.uwaterloo.ca/software/nearbyfriend/
- PaperSpeckle
Introduction Understanding SMS Design Conclusions

Questions?

Earl Oliver, University of Waterloo Mobicom 2008, Workshop on Challenged Networks