Exploiting the Short Message Service as a Control Channel in Challenged Network Environments

Earl Oliver

PhD Candidate Tetherless Computing Lab, School of Computer Science University of Waterloo

September 15, 2008

イロト イポト イヨト イヨト

Outline

1 Introduction

- Motivation
- Objectives

2 Understanding SMS

- Characteristics
- Sample message flows

3 Design

- Protocol
- Architecture
- Implementation

4 Summary

・ロン ・回 と ・ ヨ と ・ ヨ と …

Outline

1 Introduction

- Motivation
- Objectives
- 2 Understanding SMS
 - Characteristics
 - Sample message flows
- 3 Design
 - Protocol
 - Architecture
 - Implementation

4 Summary

<ロ> (四) (四) (三) (三) (三)

Outline

1 Introduction

- Motivation
- Objectives
- 2 Understanding SMS
 - Characteristics
 - Sample message flows
- 3 Design
 - Protocol
 - Architecture
 - Implementation

Summary

(1日) (日) (日)

Outline

1 Introduction

- Motivation
- Objectives
- 2 Understanding SMS
 - Characteristics
 - Sample message flows
- 3 Design
 - Protocol
 - Architecture
 - Implementation

< □ > < □ > < □ >

Take home points

• Cellular network is highly erratic under bursty workloads.

• Characterized properties of the SMS network using bursty workloads using a variety of commondity hardware.

• Designed and built a robust data channel on top of SMS.

イロン イヨン イヨン イヨン

-3

Take home points

- Cellular network is highly erratic under bursty workloads.
- Characterized properties of the SMS network using bursty workloads using a variety of commondity hardware.

Designed and built a robust data channel on top of SMS.

イロン イ部ン イヨン イヨン 三連

Take home points

- Cellular network is highly erratic under bursty workloads.
- Characterized properties of the SMS network using bursty workloads using a variety of commondity hardware.
- Designed and built a robust data channel on top of SMS.

イロト イポト イヨト イヨト

Motivation Objectives

Motivation

Growth of SMS

• Cellular networks are ubiquitous.

- Over 1 trillion SMS message sent in 2005.
- Projected to be 3.7 trillion SMS messages per year by 2012.
- Competition between carriers, growth of MMS, and data services are driving down prices*.
 - (India) smsjunction.com : Rs. 0.09 (\$0.002 USD) / message
 - (India) znisms.com : Rs. 0.28 (\$0.006 USD) / message
 - (US) AT&T : unlimited SMS messages for \$5 USD / month

* Except in Canada: no unlimited plans and charges for incoming messages.

<ロ> (日) (日) (日) (日) (日)

Motivation Objectives

Motivation

Growth of SMS

- Cellular networks are ubiquitous.
 - Over 1 trillion SMS message sent in 2005.
 - Projected to be 3.7 trillion SMS messages per year by 2012.
- Competition between carriers, growth of MMS, and data services are driving down prices*.
 - (India) smsjunction.com : Rs. 0.09 (\$0.002 USD) / message
 - (India) znisms.com : Rs. 0.28 (\$0.006 USD) / message
 - (US) AT&T : unlimited SMS messages for \$5 USD / month

* Except in Canada: no unlimited plans and charges for incoming messages.

Motivation Objectives

Motivation

Growth of SMS

- Cellular networks are ubiquitous.
 - Over 1 trillion SMS message sent in 2005.
 - Projected to be 3.7 trillion SMS messages per year by 2012.
- Competition between carriers, growth of MMS, and data services are driving down prices*.
 - (India) smsjunction.com : Rs. 0.09 (\$0.002 USD) / message
 - (India) znisms.com : Rs. 0.28 (\$0.006 USD) / message
 - (US) AT&T : unlimited SMS messages for \$5 USD / month

* Except in Canada: no unlimited plans and charges for incoming messages.

<ロ> (四) (四) (三) (三) (三)

Motivation Objectives

Motivation

Growth of SMS

- Cellular networks are ubiquitous.
 - Over 1 trillion SMS message sent in 2005.
 - Projected to be 3.7 trillion SMS messages per year by 2012.
- Competition between carriers, growth of MMS, and data services are driving down prices*.
 - (India) smsjunction.com : Rs. 0.09 (\$0.002 USD) / message
 - (India) znisms.com : Rs. 0.28 (\$0.006 USD) / message
 - (US) AT&T : unlimited SMS messages for \$5 USD / month

* Except in Canada: no unlimited plans and charges for incoming messages.

<ロ> (四) (四) (三) (三) (三)

Motivation Objectives

Applications of SMS

Existing applications

- Messaging, e-voting/surveys, Internet search, e-commerce, system monitoring, notifications, etc.
 - Nearly always constrained to a single SMS message.

Can SMS be used to transport much larger quantities of data?

ヘロン 人間 とくほど 人間 とう

Motivation Objectives

Applications of SMS

Existing applications

- Messaging, e-voting/surveys, Internet search, e-commerce, system monitoring, notifications, etc.
 - Nearly always constrained to a single SMS message.

Can SMS be used to transport much larger quantities of data?

<ロ> (四) (四) (三) (三) (三)

Motivation Objectives

Applications of SMS

Existing applications

- Messaging, e-voting/surveys, Internet search, e-commerce, system monitoring, notifications, etc.
 - Nearly always constrained to a single SMS message.

Can SMS be used to transport much larger quantities of data?

・ロン ・回 と ・ ヨン ・ ヨン

Motivation Objectives

Existing solutions

• Enhanced Message Service (EMS)

- Application layer extension to SMS.
- Device support is poor.
- Cellular data services (GPRS/EDGE, EVDO)
 - Greatly superior as a data service.
 - Often two orders of magnitude cheaper.
 - Sparsely deployed in developing regions.
 - Mobile end-points often not reachable.

SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services	
	(TCP/IP)	

イロト イヨト イヨト イヨト

Motivation Objectives

Existing solutions

- Enhanced Message Service (EMS)
 - Application layer extension to SMS.
 - Device support is poor.
- Cellular data services (GPRS/EDGE, EVDO)
 - Greatly superior as a data service.
 - Often two orders of magnitude cheaper.
 - Sparsely deployed in developing regions.
 - Mobile end-points often not reachable.

SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services	
	(TCP/IP)	

イロト イヨト イヨト イヨト

Motivation Objectives

Existing solutions

- Enhanced Message Service (EMS)
 - Application layer extension to SMS.
 - Device support is poor.
- Cellular data services (GPRS/EDGE, EVDO)
 - Greatly superior as a data service.
 - Often two orders of magnitude cheaper.
 - Sparsely deployed in developing regions.
 - Mobile end-points often not reachable.

SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services	
	(TCP/IP)	

イロト イポト イヨト イヨト

Motivation Objectives

Existing solutions

- Enhanced Message Service (EMS)
 - Application layer extension to SMS.
 - Device support is poor.
- Cellular data services (GPRS/EDGE, EVDO)
 - Greatly superior as a data service.
 - Often two orders of magnitude cheaper.
 - Sparsely deployed in developing regions.
 - Mobile end-points often not reachable.

SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services (TCP/IP)	

Motivation Objectives

Existing solutions

- Enhanced Message Service (EMS)
 - Application layer extension to SMS.
 - Device support is poor.
- Cellular data services (GPRS/EDGE, EVDO)
 - Greatly superior as a data service.
 - Often two orders of magnitude cheaper.
 - Sparsely deployed in developing regions.
 - Mobile end-points often not reachable.

SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services (TCP/IP)	

Motivation Objectives

Claim: there are many practical applications for SMS.

Such as:

- Exchanging cryptographic keys.
- DTN routing table updates.
- Synchronous user creation at rural kiosks.
- And many more ...

Motivation Objectives

Claim: there are many practical applications for SMS.

Such as:

- Exchanging cryptographic keys.
- DTN routing table updates.
- Synchronous user creation at rural kiosks.
- And many more ...

Motivation Objectives

Claim: there are many practical applications for SMS.

Such as:

- Exchanging cryptographic keys.
- DTN routing table updates.
- Synchronous user creation at rural kiosks.
- And many more ...

Motivation Objectives

Claim: there are many practical applications for SMS.

Such as:

- Exchanging cryptographic keys.
- DTN routing table updates.
- Synchronous user creation at rural kiosks.
- And many more ...

イロン イボン イヨン 一座

Motivation Objectives

Claim: there are many practical applications for SMS.

Such as:

- Exchanging cryptographic keys.
- DTN routing table updates.
- Synchronous user creation at rural kiosks.
- And many more ...

イロト イポト イヨト イヨト

Motivation Objectives

Goal

To build a general purposed data channel on top of SMS.

	Target data sizes (1 byte to 32 KB)	
SMS (140 bytes)	EMS (800 bytes [defined to support up to 36 KB, but not implemented])	
	Cellular data services (TCP/IP)	

・ロト ・回ト ・ヨト ・ヨト 三星

Motivation Objectives

Objectives

- Fully utilize the capacity of the SMS network.
- Minimize monetary cost by reducing redundant messages.
- Reliable and robust to errors in hardware and the network.
- Must run on (or interact with) a wide range of devices.
 - From current smartphones to previous generation/recycled cell phones.
- Compact and integrate seamlessly with existing mobile systems.

イロト イヨト イヨト イヨト

Motivation Objectives

Objectives

- Fully utilize the capacity of the SMS network.
- Minimize monetary cost by reducing redundant messages.
- Reliable and robust to errors in hardware and the network.
- Must run on (or interact with) a wide range of devices.
 - From current smartphones to previous generation/recycled cell phones.
- Compact and integrate seamlessly with existing mobile systems.

イロト イヨト イヨト イヨト

Motivation Objectives

Objectives

- Fully utilize the capacity of the SMS network.
- Minimize monetary cost by reducing redundant messages.
- Reliable and robust to errors in hardware and the network.
- Must run on (or interact with) a wide range of devices.
 - From current smartphones to previous generation/recycled cell phones.
- Compact and integrate seamlessly with existing mobile systems.

<ロ> (四) (四) (三) (三) (三)

Motivation Objectives

Objectives

- Fully utilize the capacity of the SMS network.
- Minimize monetary cost by reducing redundant messages.
- Reliable and robust to errors in hardware and the network.
- Must run on (or interact with) a wide range of devices.
 - From current smartphones to previous generation/recycled cell phones.
- Compact and integrate seamlessly with existing mobile systems.

イロト イポト イヨト イヨト

Motivation Objectives

Objectives

- Fully utilize the capacity of the SMS network.
- Minimize monetary cost by reducing redundant messages.
- Reliable and robust to errors in hardware and the network.
- Must run on (or interact with) a wide range of devices.
 - From current smartphones to previous generation/recycled cell phones.
- Compact and integrate seamlessly with existing mobile systems.

イロト イポト イヨト イヨト

Characteristics Sample message flows

How does the SMS network behave?

Previous work

- Traced based analysis of India's cellular network.
- Does not examine mass message senders as an isolated group.

In this work

- Focus on traffic patterns that differ significantly from normal human generated traffic.
 - Transmission rate
 - Delay
 - Loss rate
 - Other properties: transmission failure rate and reordering

Characteristics Sample message flows

How does the SMS network behave?

Previous work

- Traced based analysis of India's cellular network.
- Does not examine mass message senders as an isolated group.

In this work

- Focus on traffic patterns that differ significantly from normal human generated traffic.
 - Transmission rate
 - Delay
 - Loss rate
 - Other properties: transmission failure rate and reordering

Characteristics Sample message flows

How does the SMS network behave?

Previous work

- Traced based analysis of India's cellular network.
- Does not examine mass message senders as an isolated group.

In this work

- Focus on traffic patterns that differ significantly from normal human generated traffic.
 - Transmission rate
 - Delay
 - Loss rate
 - Other properties: transmission failure rate and reordering

Characteristics Sample message flows

How does the SMS network behave?

Previous work

- Traced based analysis of India's cellular network.
- Does not examine mass message senders as an isolated group.

In this work

- Focus on traffic patterns that differ significantly from normal human generated traffic.
 - Transmission rate
 - Delay
 - Loss rate
 - Other properties: transmission failure rate and reordering

<ロ> (四) (四) (三) (三) (三)

Characteristics Sample message flows

Characterizing SMS

Testbed

- Two testbed configurations that represent common usage scenarios:
 - Messages exchanged between cell phones tethered to commodity PCs.
 - Messages exchanged between smartphones.

Earl Oliver, University of Waterloo Mobicom 2008, Workshop on Challenged Networks

Characteristics Sample message flows

Unidirectional flow (20 messages)

Earl Oliver, University of Waterloo

Mobicom 2008, Workshop on Challenged Networks

Characteristics Sample message flows

Unidirectional flow (40 messages)

Earl Oliver, University of Waterloo

Mobicom 2008, Workshop on Challenged Networks

Characteristics Sample message flows

Bidirectional flow (10 messages)

Earl Oliver, University of Waterloo

Mobicom 2008, Workshop on Challenged Networks

Protocol Architecture Implementation

Design

Key points derived from the SMS characterization

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Significant message reordering (2.53% to 41.95%)
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Messages are rarely lost (4%).
- Messages are duplicated (3.1%).
- Variable delay/inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Protocol Architecture Implementation

Design

Key points derived from the SMS characterization

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Significant message reordering (2.53% to 41.95%)
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Messages are rarely lost (4%).
- Messages are duplicated (3.1%).
- Variable delay/inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Protocol Architecture Implementation

Design

Key points derived from the SMS characterization

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Significant message reordering (2.53% to 41.95%)
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Messages are rarely lost (4%).
- Messages are duplicated (3.1%).
- Variable delay/inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Protocol Architecture Implementation

Design

Key points derived from the SMS characterization

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Significant message reordering (2.53% to 41.95%)
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Messages are rarely lost (4%).
- Messages are duplicated (3.1%).
- Variable delay/inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Protocol Architecture Implementation

Design

Key points derived from the SMS characterization

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Significant message reordering (2.53% to 41.95%)
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Messages are rarely lost (4%).
- Messages are duplicated (3.1%).
- Variable delay/inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

<ロ> (四) (四) (三) (三) (三)

Protocol Architecture Implementation

Design

Key points derived from the SMS characterization

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Significant message reordering (2.53% to 41.95%)
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Messages are rarely lost (4%).
- Messages are duplicated (3.1%).
- Variable delay/inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

<ロ> (四) (四) (三) (三) (三)

Protocol Architecture Implementation

Design

Key points derived from the SMS characterization

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Significant message reordering (2.53% to 41.95%)
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Messages are rarely lost (4%).
- Messages are duplicated (3.1%).
- Variable delay/inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

イロト イポト イヨト イヨト

Protocol Architecture Implementation

Design

Key points derived from the SMS characterization

- NIC dependency the choice of hardware impacts the behaviour of SMS.
- Significant message reordering (2.53% to 41.95%)
- Bidirectional traffic significantly increases transmission time, delay, and reordering.
- Messages are rarely lost (4%).
- Messages are duplicated (3.1%).
- Variable delay/inter-message arrival times.
- Burst size has no effect we can send as fast as possible.
- Messages remain intact.

イロト イポト イヨト イヨト

Protocol Architecture Implementation

Protocol

Message format

- Message headers range from 2 3 bytes in length.
 - Maximize the fixed 140 byte message payload.
- Base 64 mode to support
 - Reduces effective payload to 120 bytes.
 - Supports communication with a wide range of devices (that only accept printable ASCII characters).

イロト イヨト イヨト イヨト

-2

Protocol Architecture Implementation

Protocol

Message format

- Message headers range from 2 3 bytes in length.
 - Maximize the fixed 140 byte message payload.
- Base 64 mode to support
 - Reduces effective payload to 120 bytes.
 - Supports communication with a wide range of devices (that only accept printable ASCII characters).
- Details are in the paper.

イロト イヨト イヨト イヨト

-

Protocol Architecture Implementation

Protocol (continued)

Flow control and error control

- Experimented with SMART and sliding window techniques.
- NETBLT

・ロト ・回ト ・ヨト ・ヨト 三星

Protocol Architecture Implementation

Protocol (continued)

Flow control and error control

- Experimented with SMART and sliding window techniques.
- NETBLT

Protocol Architecture Implementation

NETBLT example

-2

Protocol Architecture Implementation

Advantages of NETBLT

- Sender may transmit a continuous series of messages since burst size has no effect on transmission rate, delay, or loss.
- Bidirectional traffic is minimized through the use of a cumulative ack.
- Cumulative selective ack is tolerant to message reordering, random losses, and variable inter-arrival times.
- Low SMS loss rate requires few acks to be sent.

Protocol Architecture Implementation

Advantages of NETBLT

- Sender may transmit a continuous series of messages since burst size has no effect on transmission rate, delay, or loss.
- Bidirectional traffic is minimized through the use of a cumulative ack.
- Cumulative selective ack is tolerant to message reordering, random losses, and variable inter-arrival times.
- Low SMS loss rate requires few acks to be sent.

Protocol Architecture Implementation

Advantages of NETBLT

- Sender may transmit a continuous series of messages since burst size has no effect on transmission rate, delay, or loss.
- Bidirectional traffic is minimized through the use of a cumulative ack.
- Cumulative selective ack is tolerant to message reordering, random losses, and variable inter-arrival times.
- Low SMS loss rate requires few acks to be sent.

Protocol Architecture Implementation

Advantages of NETBLT

- Sender may transmit a continuous series of messages since burst size has no effect on transmission rate, delay, or loss.
- Bidirectional traffic is minimized through the use of a cumulative ack.
- Cumulative selective ack is tolerant to message reordering, random losses, and variable inter-arrival times.
- Low SMS loss rate requires few acks to be sent.

イロト イポト イヨト イヨト

Protocol Architecture Implementation

Architecture

- Extensible architecture that allows for integration into existing mobile systems.
- Device *plug-ins* supported provided through *SMS Handler* API.
- Detailed architectural description in the paper.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Protocol Architecture Implementation

Architecture

- Extensible architecture that allows for integration into existing mobile systems.
- Device *plug-ins* supported provided through *SMS Handler* API.
- Detailed architectural description in the paper.

・ロン ・回 と ・ ヨン ・ ヨン

Protocol Architecture Implementation

Architecture

- Extensible architecture that allows for integration into existing mobile systems.
- Device *plug-ins* supported provided through *SMS Handler* API.
- Detailed architectural description in the paper.

イロト イヨト イヨト イヨト

-2

Protocol Architecture Implementation

Implementation and evaluation

Summary

- The SMS-NIC is implemented in Java Micro Edition.
- CLDC compliant.
- Runs on WIDE range of existing mobile cell phones and smartphones.

Sample workloads

	2 KB RSA key (16 msgs)	4 KB BLOB (31 msgs)
SMS-NIC		

Implementation details and evaluation are in the paper.

・ロト ・回ト ・ヨト ・ヨト

-2

Protocol Architecture Implementation

Implementation and evaluation

Summary

- The SMS-NIC is implemented in Java Micro Edition.
- CLDC compliant.
- Runs on WIDE range of existing mobile cell phones and smartphones.

Sample workloads

	2 KB RSA key (16 msgs)	4 KB BLOB (31 msgs)
SMS-NIC		

mplementation details and evaluation are in the paper.

・ロト ・回ト ・ヨト ・ヨト

Protocol Architecture Implementation

Implementation and evaluation

Summary

- The SMS-NIC is implemented in Java Micro Edition.
- CLDC compliant.
- Runs on WIDE range of existing mobile cell phones and smartphones.

Sample workloads

	GPS position (1 msg)	2 KB RSA key (16 msgs)	4 KB BLOB (31 msgs)
SMS-NIC	37.32 sec	97.23 sec	212.11 sec

mplementation details and evaluation are in the paper.

イロト イポト イヨト イヨト

Protocol Architecture Implementation

Implementation and evaluation

Summary

- The SMS-NIC is implemented in Java Micro Edition.
- CLDC compliant.
- Runs on WIDE range of existing mobile cell phones and smartphones.

Sample workloads

	GPS position (1 msg)	2 KB RSA key (16 msgs)	4 KB BLOB (31 msgs)
SMS-NIC	37.32 sec	97.23 sec	212.11 sec

Implementation details and evaluation are in the paper.

イロト イポト イヨト イヨト

Summary of work

- Characterized the behaviour of SMS under continuous, bursty workloads.
- Designed and implemented a reliable and robust data channel built on top of SMS.
- Through an extensible architecture the SMS-NIC runs on or works with a wide range of mobile devices.

イロン イ部ン イヨン イヨン 三連

Using the SMS-NIC

Available for download

- SMS-NIC source code is available at: http://blizzard.cs.uwaterloo.ca/eaoliver/sms/
- Includes plug-ins for CLDC enabled devices and Gammu.
- Apache open source license.

Current user

- KioskNet
 - http://blizzard.cs.uwaterloo.ca/kiosknet/
- Nearby Friend http://crysp.uwaterloo.ca/software/nearbyfriend/
- PaperSpeckle

Using the SMS-NIC

Available for download

- SMS-NIC source code is available at: http://blizzard.cs.uwaterloo.ca/eaoliver/sms/
- Includes plug-ins for CLDC enabled devices and Gammu.
- Apache open source license.

Current user

- KioskNet
 - http://blizzard.cs.uwaterloo.ca/kiosknet/
- Nearby Friend http://crysp.uwaterloo.ca/software/nearbyfriend
- PaperSpeckle

Using the SMS-NIC

Available for download

- SMS-NIC source code is available at: http://blizzard.cs.uwaterloo.ca/eaoliver/sms/
- Includes plug-ins for CLDC enabled devices and Gammu.
- Apache open source license.

Current user

KioskNet

http://blizzard.cs.uwaterloo.ca/kiosknet/

- Nearby Friend http://crysp.uwaterloo.ca/software/nearbyfriend,
- PaperSpeckle

Using the SMS-NIC

Available for download

- SMS-NIC source code is available at: http://blizzard.cs.uwaterloo.ca/eaoliver/sms/
- Includes plug-ins for CLDC enabled devices and Gammu.
- Apache open source license.

Current user

KioskNet

http://blizzard.cs.uwaterloo.ca/kiosknet/

- Nearby Friend http://crysp.uwaterloo.ca/software/nearbyfriend/
- PaperSpeckle

Questions?

Earl Oliver, University of Waterloo Mobicom 2008, Workshop on Challenged Networks

・ロト ・回ト ・ヨト ・ヨト 三星