
Computer Networks xxx (2010) xxx–xxx
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Design and implementation of the KioskNet system

S. Guo, M. Derakhshani, M.H. Falaki, U. Ismail, R. Luk, E.A. Oliver, S. Ur Rahman, A. Seth ⇑,
M.A. Zaharia, S. Keshav
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

a r t i c l e i n f o
Article history:
Received 2 March 2010
Received in revised form 18 June 2010
Accepted 1 August 2010
Available online xxxx
Responsible Editor: Ying-Dar Lin

Keywords:
Ictd
Mechanical backhaul
Delay-tolerant networks
Architecture
Rural communication
WiFi
1389-1286/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.comnet.2010.08.001

⇑ Corresponding author.
E-mail addresses: sguo@uwaterloo.ca (S. Guo), m

(M.H. Falaki), uismail@uwaterloo.ca (U. Ismail), e
(E.A. Oliver), surrahman@uwaterloo.ca (S.U. Rahm
loo.ca (A. Seth), mazahari@uwaterloo.ca (M.A. Zaha
loo.ca (S. Keshav).

Please cite this article in press as: S. Guo et al
j.comnet.2010.08.001
a b s t r a c t

Rural Internet kiosks in developing regions can cost-effectively provide communication
and information services to the poorest sections of society. Yet, a variety of technical
and non-technical issues have caused most kiosk deployments to be economically unsus-
tainable. KioskNet addresses the key technical problems underlying kiosk failure by using
robust ‘mechanical backhaul’ for connectivity, and by using low-cost and reliable kiosk
controllers to support services delivered from one or more recycled PCs. KioskNet also
addresses related issues such as security, user management, and log collection. In this
paper, we describe the KioskNet system, outlining its hardware, software, and security
architecture. We describe a pilot deployment and how we used lessons from this deploy-
ment to re-design our initial prototype.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Rural Internet kiosks in developing countries provide a
variety of services such as birth, marriage, and death certif-
icates, land records, and consulting on medical and agricul-
tural problems. A typical kiosk has a Windows-based PC
and a dial-up or VSAT connection to the Internet, and is
operated by a computer-literate kiosk owner who main-
tains the system and assists end users. To effectively serve
its users and be profitable to its owner, a kiosk should be
highly available and should have a reliable connection to
the Internet. Moreover, it should be low-cost, so that it
can be sustained with a minimum of user fees. Unfortu-
nately, due to limited electrical power, pervasive dust,
mechanical wear-and-tear, and computer viruses, kiosk
computers often fail, requiring frequent (and expensive)
. All rights reserved.

hfalaki@uwaterloo.ca
aoliver@uwaterloo.ca
an), a3seth@uwater-
ria), keshav@uwater-

., Design and implementa
repairs. Similarly, network connectivity is often lost due
to failures in the telephone system, inability to power the
VSAT station, or loss of alignment of long-range wireless
links. Faced with high costs and unreliable service delivery,
customers quickly lose interest. Due to these factors, in
addition to several other non-technical issues, kiosk
deployments are often found to be unsustainable in the
long term Toyama [1].

KioskNet attempts to make a kiosk more robust without
increasing its cost, thus addressing at least the technical as-
pects that lead to lack of kiosk sustainability. It builds on
two key concepts. First, it uses a single-board computer-
based, low-cost, low-power kiosk controller at each kiosk.
The controller can communicate wirelessly with another
single-board computer mounted on a vehicle (as was pio-
neered by Daknet [2]). These vehicles carry data to and from
a gateway, where data is exchanged with the Internet. This
‘mechanical backhaul’ solution described in Seth et al. [3]
avoids the cost of trenches, towers, and satellite dishes,
allowing Internet access even in remote areas. In areas
where dial-up, long-range wireless or cellular phone service
is available, the kiosk controller can be additionally config-
ured to use these communication links in conjunction with
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
mailto:sguo@uwaterloo.ca
mailto:mhfalaki@uwaterloo.ca
mailto:uismail@uwaterloo.ca
mailto:eaoliver@uwaterloo.ca
mailto:surrahman@uwaterloo.ca
mailto:a3seth@uwaterloo.ca
mailto:a3seth@uwaterloo.ca
mailto:mazahari@uwaterloo.ca
mailto:keshav@uwaterloo.ca
mailto:keshav@uwaterloo.ca
http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

Fig. 1. KioskNet in action.

P

P

Gateways

Proxy

Proxy
Legacy Server

Bus

Bus

Kiosks

Kiosks

Registry

.....

.....

.....

.....

.....

.....

.....

Gateways

Fig. 2. KioskNet overview.

2 S. Guo et al. / Computer Networks xxx (2010) xxx–xxx
mechanical backhaul. Second, KioskNet allows refurbished
PCs to boot from the kiosk controller. Kiosk controllers are
reasonably tamper-proof so they offer reliable virus-free
boot images and binaries. We do not use the PC’s hard disk,
thus avoiding hard disk failures and disk-resident viruses.
Moreover, refurbished PCs are cheap and spare parts are
widely available. Fig. 1 shows some pictures from our pilot
deployments, described later in Section 9.

KioskNet has the following key features:

� The system is low-cost (see Section 8 for details) and
appears to be economically viable. We estimate that
our system requires a capital expenditure of $100–
$700/kiosk, depending on the configuration,1 and an
operating expenditure of $70/kiosk/month. These rough
estimates include the cost of field technicians and capital
depreciation. This is 4–10 times cheaper than other
solutions.
1 All figures are in US dollars.

Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
� The solution is rapidly deployable: we successfully
installed a prototype in Anandapuram village, Vishaka-
patnam district, AP, India in two days during May 2006.
� Kiosk controllers are low-power (6–8 W), therefore they

can be run off a solar panel.
� Recycled PCs can run either the (Linux) binaries that are

packaged with the kiosk controller, which are guaran-
teed to be virus free, or can boot into an existing oper-
ating system (typically Windows) from their hard drive
for stand-alone computing.
� We can provide private and authenticated communica-

tion among kiosk users, and between a kiosk user and a
secure node in the Internet.
� Our software is shipped in the form of a LiveCD that can

be booted on any Windows or Linux PC. The CD is used
to copy OS images directly onto hard drives, which are
then installed in single-board computers.
� Our code is free under the Apache open-source license

with no patent, copyright or intellectual property
restrictions.
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

S. Guo et al. / Computer Networks xxx (2010) xxx–xxx 3
In the remainder of this paper, we present an overview
of the system in Section 2 and its software architecture in
Sections 3 and 4. The security architecture is described in
Section 5. We describe the cost structure in Section 8 and
our experience with deploying the system in Section 9.
Section 10 discusses some changes to our initial design
decisions that reflect experiences from the pilot deploy-
ment. We present related work in Section 11 and conclude
in Section 12.
2. Overview

KioskNet consists of a set of kiosks that use mechanical
backhaul Seth et al. [3] as the primary means of communi-
cation to the Internet (Fig. 2). Ferries carry data to and from
a kiosk to a set of gateways that communicate with a proxy
on the Internet. The remainder of this section describes
these KioskNet components in more detail.
2.1. Kiosks

Each kiosk has a kiosk controller, which is a server that
provides recycled PCs with network boot, a network file
system, user management, and network connectivity by
means of dial-up, GSM/GPRS, VSAT, or mechanical back-
haul. A kiosk controller always has a WiFi NIC. In addition,
for most deployments, we expect that kiosk controllers
would also provide connectivity by other means, such as
GPRS, SMS (GSM), VSAT, or a dial-up connection. Our cur-
rent prototype uses headless and keyboard-less low-power
single-board computers, such as those from Soekris Corp.
and via Corp., as kiosk controllers, although the controller
functionality can be implemented in any commodity PC.

We would like kiosks to be used by two types of users.
We expect most users to access the system from a recycled
PC (also called a ‘terminal’) that boots over the network
(using RAM disk) from the kiosk controller and can then
access and execute application binaries provided by the
kiosk controller over NFS. Recycled PCs cost approximately
$100 and spare parts are widely available worldwide.
Moreover, as a shared resource, they are an order of mag-
nitude cheaper than any dedicated resource.

A second class of users, such as wealthier villagers, gov-
ernment officials, or non-government organization (NGO)
partners, could access one or more kiosks, or a bus directly,
using their own devices, such as smart phones, PDAs, and
laptops. Such users could use the kiosk controller or bus
essentially as a wireless hotspot that provides store-
and-forward access to the Internet. Due to some technical
issues (specifically, the difficulty in setting up public and
private keys in such devices), the current distribution of
our software does not support them. We intend to handle
this in future releases of our software.

The set of kiosks in the same geographical area, and
administered by the same entity, comprises a KioskNet re-
gion. Regions not only have administrative significance, in
that all entities in a region are certified by the same certif-
icate authority, but also have routing significance, because
bundles are flooded within a region. Fig. 2 shows a system
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
with two regions, which could both be potentially man-
aged by a single administrative entity.

2.2. Ferries

Although kiosk controllers can communicate with the
Internet using a variety of connectivity options, our focus
is on the use of mechanical backhaul. This is provided by
cars, buses, motorcycles, or trains, that pass by a kiosk
and an Internet gateway. We call such entities ferries.

A ferry has a single-board computer that is powered
from the vehicle’s own battery. This computer has 20–
40 GB of storage and a WiFi network interface. It commu-
nicates opportunistically with the kiosk controllers and
Internet gateways on its path. During an opportunistic
communication session, which may last from 20 s to
5 min, we expect 10–150 MB of data to be transferred in
each direction. This data is stored and forwarded in the
form of self-identifying bundles. Ferries upload and down-
load bundles opportunistically to and from an Internet
gateway.

2.3. Gateways

A gateway is a computer that has a WiFi network inter-
face, storage, and an always-on connection to the Internet.
Gateways are likely to be present in cities with DSL or cable
broadband Internet access. A gateway collects data oppor-
tunistically from a ferry and stages it in local storage before
uploading it to the Internet through the proxy. A region
may have more than one gateway.

2.4. Proxy

We expect that most communication between a kiosk
user and the Internet would be to use existing services
such as email, financial transactions, and access to back-
end systems that provide government-to-citizen services.
Legacy servers that provide such services typically can nei-
ther deal with long delays and disconnections, nor easily
modified. Therefore, we need a disconnection-aware proxy
that hides end-user disconnection from legacy servers. We
currently assume that there is one proxy per region.

The proxy is resident in the Internet and has two halves.
One half establishes disconnection-tolerant connection
sessions with applications running on the kiosk controller
or on mobile users’ devices. The other half communicates
with legacy servers on behalf of disconnected users. Data
forwarding between the two halves can be highly applica-
tion dependent. To support application-specific communi-
cation with legacy servers, we support application plugins
at the proxy that coordinate their actions with a corre-
sponding application at the kiosk controller or mobile de-
vice. For example, such a plugin implements SMTP to
communicate with legacy mail servers on behalf of users
at kiosks. The current release of KioskNet includes several
proxy plugins, which are outlined in Section 7.

When the communication sublayer at the proxy re-
ceives application data from a plugin, the data needs to
be transferred to gateway that is in communication with
the destination kiosk. This is done using algorithms such
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

4 S. Guo et al. / Computer Networks xxx (2010) xxx–xxx
as those described in Guo and Keshav [4]. The gateways
subsequently hand off data to passing ferries for transport
and delivery to a kiosk. The kiosk passes the data to an
application-specific plugin at the kiosk for delivery to kiosk
users.

In the opposite direction, when a kiosk user wants to
send data to the Internet, it is carried to a gateway, which
transfers it to a proxy. The proxy passes received data to
the associated plugin, which interfaces with legacy Inter-
net servers. For instance, in the case of email, the proxy
plugin would forward Internet bound emails using SMTP.

Besides serving as an application-layer gateway, a
proxy provides a central point of management. It runs a
DNS-based location register that is used for location
management, as described in Section 4.5. It also maintains
a Whitepages database that maps from a user’s globally
unique identifier (GUID) to its X509 public key certificate.
This database, which is replicated at each kiosk, allows
secure communication among KioskNet users.

2.5. Legacy servers

The last component of our architecture, the legacy serv-
ers, are typically accessed using TCP/IP and an application-
layer protocol such as IMAP, SMTP, or HTTP by a proxy. We
do not require any changes to legacy servers.

3. Communication architecture

KioskNet communication software runs on the follow-
ing components: proxies, gateways, ferries (buses), kiosk
Applications

Per-user per-application
directory

Directory watcher

OCMP

TCP/IP

KIOSK CONTROLLER

WiFi

WiFi CO

GPRS
CO

 Cell phone

SMS CO

Cell phone

SMS

TERMINAL

Application

Secure
directory
watcher

TCP/IP

WiFi

NFS

Secure
application

WiMAX
CO

Register app

Encrypted
directory

WiMAX

TCP/
IP

GPRS

Predictor

Fig. 3. KioskNet data path when used to send email from a kiosk to the Internet. I
(c) data transportation network, and (d) proxy. Fixed terminals running off recyc
kiosk controller can have multiple NICs for communication, such as WiFi or
‘mechanical backhaul’ based connectivity. Policies can be encoded into the contro
to optimize cost of data delivery, or urgency, reliability, etc. The actual delay-tole
data between kiosk controllers and gateways. Gateways are special infrastructur
servers in the Internet, which reassemble data for delivery to legacy application

Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
controllers, terminals (recycled PCs), and cell phones (or
PDAs). The overall communication architecture is sketched
in Fig. 3 showing the software protocol architecture.

The communication system allows kiosk users to ex-
change messages with the Internet, other users in the same
region, and with users in other regions. It also allows users
to move to other kiosks in the same region, or kiosks in
other regions, while continuing to send and receive mes-
sages. Finally, it allows users of mobile devices to use a
kiosk to send and receive bulk data messages more cheaply
than if they were to use data services on the cellular phone
network. This section presents a detailed description of the
protocol architecture. We present the routing protocol and
mobility support in the next section.
3.1. Protocol stack

KioskNet is an overlay network both on the Internet and
on the cellular phone network. The base communication
layers are (a) TCP/IP that runs on wired or wireless net-
work interfaces and (b) the Short Message Service (SMS)
present on the cellular phone network. KioskNet uses
TCP/IP and the Internet to carry data, and SMS to carry con-
trol messages and potentially short, urgent, data messages.
TCP/IP is present in all system components, and SMS is
present in all components except for the terminals and
possibly the gateways. This formal separation of communi-
cation into a delay-tolerant data channel and an end-to-
end control channel brings robustness to our design; as
we will see, the control channel can be used for route up-
dates or user mobility, which are otherwise hard tasks in a
WiFi CO

TCP/IP

WiFi

Per-user per-application directory

Directory watcher

OCMP

TCP/IP

DNS-
based

location
register

PROXY

OCMP

TCP/IP

GATEWAYBUS

WiFI Wired WiMAX

Location: {MX UserUID CustodianGUID}
Topology: A ProxyGUID IP
Topology: {TXT RegionGUID ProxyGUID}

Predictor

Register app
plugin

Application proxy
plugins

WiMAX
CO

GPRS
CO

Cell phone

SMS CO

TCP/
IP

GPRSWired

OCMP

WiFi
CO

Wired
CO

WiFi
CO

t can be considered as having four parts: (a) terminals, (b) kiosk controller,
led PCs, can connect to a kiosk controller to upload or download data. The
WiMax if available, or GPRS/EDGE style cellular data connectivity, or

ller to use different interfaces under different circumstances, for example,
rant data transportation network is comprised of mobile routers that ferry
e nodes that have Internet connectivity. They push or pull data from proxy
s.

tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

S. Guo et al. / Computer Networks xxx (2010) xxx–xxx 5
purely delay-tolerant environment. The SMS control chan-
nel itself can run either off a cellular data card, or even a
GSM cell phone mounted as a modem Oliver [5]. Using
SMS instead of a data connection over GPRS is simpler be-
cause nodes can then directly exchange low-bandwidth
information with each other using phone numbers, and
do not have to deal with dynamically assigned IP addresses
or bypassing NATs.

All components except for handheld devices and termi-
nals also run the Delay-Tolerant Networking (DTN) overlay
provided by the DTN reference implementation Demmer
et al. [6]. DTN provides a disconnection-tolerant end-to-
end transport layer. Unfortunately, the reference imple-
mentation lacks some important features:

� It does not support selective flooding within a discon-
nected region.
� It does not support users who move from one kiosk to

another.
� It does not provide the ability for a kiosk controller,

mobile device, or proxy to use application-specific pol-
icies to choose from one of many network interfaces.
� It does not provide application-specific plugins at the

proxy to allow seamless interconnection with legacy
servers on the Internet.
� It does not support a cellular network based control

plane.

To address these issues, we did two things. First, we
modified the DTNRG’s DTN 2.0 reference implementation
to add selective flooding mobility support. Second, we de-
signed and implemented the opportunistic connection
management protocol (OCMP) Seth et al. [3,7], which runs
on top of DTN and other available network connections.
OCMP is a disconnection-tolerant, policy-driven session
layer that runs over both DTN and standard TCP/IP com-
munication paths, and allows applications to choose differ-
ent network interfaces for different application-data units.
It allows application-specific plugins to execute at the
proxy to interact with legacy servers. OCMP also provides
a cellular phone network (SMS)-based control channel.
Each type of available communication path is modeled as
a connection object (CO) within OCMP. For instance, the
DTN and SMS paths are encapsulated as a DTN CO and
SMS CO respectively. There are similar COs for a TCP con-
nection bound to each type of NIC (GPRS/EDGE, WiMAX,
dial-up, etc.).

OCMP allows a policy manager to arbitrarily assign
bundles to transmission opportunities on COs. This sched-
uling problem is complex, because it has to manage many
competing interests: reducing end-to-end delay, while not
incurring excessive costs, and maximizing transmission
reliability. We do not know of an adequate solution to
the general problem. Therefore, in the current implemen-
tation, we merely send application-specified ‘urgent’ data
on an always-on connection (if that is available) and other
data on the mechanical backhaul CO. We also allow appli-
cations to designate certain data items to be sent on the
SMS CO. The design of our system, however, allows the
use of more sophisticated scheduling policies without
changing the rest of the system.
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
3.2. The SMS connection object

An interesting aspect of KioskNet’s communication
stack is its support for an ‘SMS-NIC’, which is encapsulated
by the SMS CO. The SMS-NIC allows KioskNet components
to communication over cellular networks. Note that SMS is
provided natively by the GSM voice sub-system and does
not require a user or kiosk operator to subscribe to (typi-
cally expensive) data services. Messages that are passed
to the SMS CO are fragmented into small (approximately
135 byte) pieces and sent as SMS messages to another
SMS-enabled KioskNet component (which could be an-
other kiosk controller, a ferry, or the proxy). The SMS-NIC
at the receiving component then collects the SMS mes-
sages and reassembles the original message. Although
SMS is known to be slow and limited in message size, it
provides a low-bandwidth and low-delay control channel.

The SMS-NIC has many potential uses in the KioskNet
architecture, which we are only just beginning to exploit.
We currently plan to utilize the SMS-NIC to register new
users at the kiosk synchronously with the proxy and to sig-
nal that a user has changed kiosks. We also plan to utilize
the SMS-NIC to relay location updates from a mobile ferry
to the Internet. The current GPS position of a ferry can be
sent as a single SMS message to the proxy. This would al-
low us to alert operators to ferry failures, scheduling de-
lays, or problems that may effect subsequent ferries.
Finally, the SMS-NIC can be used to provide end-to-end
security between kiosk users and third party services out-
side of the KioskNet system. For example, banks, private
websites, etc. could integrate the SMS-NIC to allow Kiosk-
Net applications to establish end-to-end cryptographic ses-
sion keys. The session keys could then be used to encrypt
data for transport over mechanical backhaul. The data
would only be decrypted by the third party who issued
the session key.

Support for sending SMS messages at kiosks can also be
used to notify users when data arrived at their local kiosk.
This removes the need for users to frequently check for
new emails and other data, it reduces overall contention
for a kiosk, and allows a single kiosk to serve more users.
We currently support user notification through specific
directory API configurations.

We now examine the protocol architecture in more de-
tail. It is easiest do so ‘right-to-left’, that is, starting at the
proxy, and working our way back to a terminal or cellular
phone.

3.3. Proxy

Working our way down from the top (and, for the mo-
ment, ignoring the ‘register’ application plugin), note the
presence of one or more application plugins. Each such
plugin is responsible for communication with a legacy ser-
ver on the Internet. Examples of such plugins are those
responsible for communicating with Flickr, FTP, and You-
Tube. A plugin interacts with legacy servers using standard
TCP/IP. To communicate with OCMP, however, it uses a
‘directory API’. This essentially means reading and writing
data to and from a per-user per-application directory. Data
written by a plugin to a communication directory results in
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

6 S. Guo et al. / Computer Networks xxx (2010) xxx–xxx
eventual creation of an OCMP bundle that is then sent,
using the best possible means, to a user. In the other direc-
tion, data arriving to the proxy from a particular user is
demultiplexed into the appropriate directory, and the plu-
gin is called to carry out application-specific forwarding
actions on this data.

The directory API is implemented by a software compo-
nent called a directory watcher. The watcher reads outgo-
ing directories and, when it notices new data, calls OCMP
to send the data. Similarly, it registers with OCMP to re-
ceive data on behalf of the plugins, and, when called by
OCMP, writes data into the application-specific directories.
Applications can specify configuration parameters, such as
the quality of service they want from OCMP, to the direc-
tory watcher by writing to a configuration file in their com-
munication directory. Details of this can be found in Seth
et al. [3] or in online documentation.

The directory watcher sends and receives data using the
OCMP session layer. Essentially, OCMP allows data to be
sent and received over one or more connection objects
(COs). Each CO wraps a connection, which could be TCP/IP,
DTN, or SMS. Unlike socket communication, where the loss
of a communication socket is fatal, OCMP assumes that COs
are ephemeral. Thus, it stores data, in the form of bundles, in
a local file or database, and, when it is alerted to the avail-
ability of CO, establishes a connection path to the OCMP
destination, and transmits bundles on the CO. A special de-
sign feature of OCMP is that it takes application policies into
account when allocating bundles to COs. For example, an
application may ask some data to be sent with high priority.
This could result in OCMP assigning the bundle to an SMS
CO. As mentioned earlier, the general problem of allocating
bundles to COs is an open problem, and, in current work, we
use simple heuristics to allocate bundles to COs.

Because of the clean separation between the OCMP
layer and COs, it is possible to easily add new COs to Kiosk-
Net. In the current system, we support the DTN, GPRS, and
SMS COs. We can, but have not yet, added support for long-
range WiFI and WiMAX COs. A WiMAX CO, for example,
would allow direct communication between the proxy
and a kiosk controller (even with WiMAX, we may still
want to use a proxy, so that low-priority bulk data is sent
using DTN at low-cost).

In addition to the scheduling of bundles over COs, the
proxy is also responsible for some DTN routing. Specifi-
cally, the proxy has to choose which gateway to send a
DTN bundle in order to achieve a performance goal such
as delay minimization, or fairness maximization Guo and
Keshav [4]. To do so, the proxy uses the location register
(described in Section 4.5) to determine which kiosk a user
is currently located. It also implements a scheduler that
uses knowledge of bus schedules to make the best possible
scheduling decision. Instead of modifying the DTN routing
protocol, we decided to make the DTN CO a simple stub
that accepts bundles and sends them to a corresponding
DTN stub on a gateway. This removes the routing decision
from DTN. Also, this means that we do not need to run DTN
on the proxy.

Finally, note that SMS and GPRS functionality is pro-
vided on the proxy by a recycled cell phone that appears
as a serial device to the proxy.
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
3.4. Gateway

The protocol stack at a gateway is relatively simple.
Essentially, it is just a standard DTN stack, with the excep-
tion of the DTN stub application, which provides one-to-
one communication with a DTN CO running at a proxy.
All bundles arriving at the DTN protocol stack are given
to the DTN stub, which forwards them to the DTN CO at
the proxy. Similarly, bundles scheduled to that particular
gateway by the scheduler at the proxy are sent by the CO
to the DTN stub at the selected gateway. Note that the
DTN implementation at the gateway is modified to support
selective flooding with metadata exchange.

3.5. Ferry

The protocol stack at a bus or ferry is even simpler than
at a gateway, because it does not even require a DTN stub.
We allow buses to use SMS using a recycled cell phone,
though, as of now, we do not have any applications that re-
quire or use this functionality.

3.6. Kiosk controller

The kiosk controller needs to support shared wired,
wireless and SMS connections. Moreover, it serves as a
point of shared access for terminals. Note that, in keeping
with its role as an OCMP endpoint, its protocol stack mir-
rors that on the proxy.

Working our way from the top again (and, for the mo-
ment, ignoring the register application and the kiosk
agent), we note that the kiosk controller supports several
applications, which are the applications that are used by
terminal users, or the kiosk franchisee. Each such applica-
tion places data it wants to send or receive in a per-user
per-application communication directory, as at the proxy.
Again, as at the proxy, a directory watcher serves as an
intermediary to carry data to and from OCMP.

We envisage that a kiosk controller is likely to be mul-
tiply connected, using both DTN on buses, as well as Wi-
MAX, GPRS, and SMS. Each such mode of connectivity at
the kiosk is associated with a CO, and OCMP is used to mul-
tiplex bundles to and from the COs as and when they are
available. Note that the GPRS and SMS functionality is ob-
tained from a cellular data card or a cell phone (typically a
recycled cell phone), and the other functionality comes
from either the DTN CO running on top of TCP/IP and WiFi,
or from a WiMAX CO running on a WiMAX NIC. At the cur-
rent time, we have not implemented the WiMAX CO.

It should be clear that this arrangement allows an appli-
cation running on the kiosk controller to use either a bus,
or a fixed link, or SMS to communicate with the proxy,
and thence to legacy servers.

We now turn our attention to how the kiosk controller
supports terminals. Terminals mount communication
directories using NFS and run applications locally. Thus,
applications running on the terminal simply need to read
and write from communication directories using NFS, as
shown (we will discuss secure applications shortly).

We now return to the register application. This applica-
tion is needed for mobility support. Essentially, when a
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

S. Guo et al. / Computer Networks xxx (2010) xxx–xxx 7
user is either created at a kiosk, or moves to a new kiosk,
we need to tell the location register in the Internet of its
new location. We do so by means of the register applica-
tion, which communicates with a corresponding plugin at
the proxy. More details on user registration can be found
in Section 4.5.
3.7. Terminal

The terminal runs two types of applications: secure
applications and insecure applications. Insecure applica-
tions use NFS to write to the communication directory on
the kiosk controller, as if they were running on the kiosk
controller. Secure applications cannot write to the shared
directory because unencrypted data written to a directory
on the kiosk controller could be snooped on by the kiosk
owner. To prevent this, a secure application must encrypt
data with the public key of the destination before writing
it in the kiosk’s communication directory. We use directo-
ries, again, to hide the tedious details of security from the
application. Instead, the application merely writes data to
a ‘secure’ directory on the terminal’s own secure (en-
crypted) file system (this is also hosted by the kiosk con-
troller, but unreadable by the kiosk owner). Data written
to this directory is noticed by a directory watcher, that en-
crypts the data, and then writes it to the kiosk controller’s
communication directory. In the reverse direction, when
the user logs into the terminal, the directory watcher scans
the communication directory on the kiosk controller. Any
data found there is decrypted using the user’s private
key, and placed in its secure directory for consumption
by the secure application.

More details of the underlying security protocols can be
found in Section 5.
2 Note that this optimization prevents the use of a kiosk as an
intermediate transfer point between two ferries. We expect this to be
unnecessary for most deployments.
4. Data transport

4.1. Naming

As a preamble to the discussion on routing we describe
the naming mechanism used in the KioskNet. Note that
KioskNet uses name-based forwarding. Therefore, every
name is also an address. To avoid confusion, we call them
both ‘Globally Unique IDentifiers’ or GUIDs.

Each user and node in the DTN has a unique user
GUID and node GUID respectively. The user GUID is of
the form: username.kioskname.regionname.organization-
name.kiosknet.org and node GUID is of the form node-
name.regionname.organizationname.kiosknet.org. User
GUIDs are generated when the user first registers at some
kiosk, and remain the same irrespective of whether the
user moves to other locations subsequently. Thus, GUIDs
are essentially the same as having flat names, but the hier-
archical nature guarantees uniqueness even in the absence
of Internet connectivity. Besides, as we will explain later,
hierarchical names can be stored in the DNS to handle cer-
tain mobility scenarios, otherwise we would have had to
use DHTs or other distributed storage and retrieval
mechanisms.
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
In addition to GUIDs, OCMP allows a particular applica-
tion to be identified by appending the ‘‘/application name”
suffix to the GUID. We have implemented limited support
for wild cards. Any one field in the GUID can be replaced by
a ‘‘�” character and will match any string. For example
‘‘admin.�.region5.uw.kiosknet.org” will send a bundle to
all users called admin on any kiosk in region 5 of the uw
organization. Similarly ‘‘�.kisok1.region1.uw.kiosknet.org”
will send a bundle to all users in kiosk1. This functionality
is essential for propagating database updates or software
updates. We hope to support more extensive forms of wild
cards in future releases.

The KioskNet routing algorithm is responsible for decid-
ing how bundles make their way from a source to a desti-
nation, where the source or destination could be a user at a
kiosk or a legacy server in the Internet. We consider three
cases for routing: routing between kiosks within a single
disconnected region, routing to and from a legacy server,
and routing between kiosks in different regions. In this sec-
tion, we assume that users are not mobile; routing in the
presence of mobility is described in Section 4.5.

4.2. Routing within a disconnected region

Measurements show that a ferry can transfer several
tens of megabytes of data to and from a kiosk as it passes
by, and it can store tens of gigabytes of data on its hard
drive. This motivates the use of flood-based routing to
trade off over-the-air bandwidth and storage for system
reliability and ease of routing.

In naive flooding, a kiosk or a gateway transfers all its
data to every ferry that passes by, and accept data from
every ferry. Clearly, this redundancy maximizes the proba-
bility of bundle delivery, while eliminating routing deci-
sions altogether. An added benefit is that with flooding,
communication between kiosk users in the same region
does not require a bundle to go to the proxy. Finally, flood-
ing reduces the amount of configuration at deployment
time, making our system easier to deploy.

We avoid the obvious inefficiencies with naive flooding
using the following optimization: Kiosks and ferries ex-
change metadata before data is transferred from a ferry
to a kiosk. This lets the ferry know which users are present
at a kiosk, and what bundles they have already received. A
ferry only transfers bundles not previously received at that
kiosk, and for a user currently present there.2

The metadata exchange protocol (Fig. 4) has five steps.
In the first step, the ferry sends a Hello message to initialize
communication. In the second step the kiosk controller
transfers a list of user GUIDs registered at the kiosk. The
ferry keeps all pending bundles in a series of lists. Each list
contains bundles destined to a different destination and
the set of lists are stored in a hash-map keyed by the des-
tination GUID. Hence upon receipt of the registered GUIDs
the ferry will extract the corresponding lists and concate-
nate them before transmitting them to the kiosk. This
means the filtering of bundles can be done in O(n) time
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

Fig. 4. Meta Data Exchange protocol.

8 S. Guo et al. / Computer Networks xxx (2010) xxx–xxx
with respect to number of GUIDs. In the fourth step, the
kiosk controller determines which of the bundles it does
not already have, and requests them from the ferry. In
the fifth and final step, the ferry transfers these bundles
to the kiosk controller. No metadata exchange is required
in the reverse direction: a kiosk transfers all its bundles
to every passing ferry. Note that metadata exchange is
not carried out between a ferry and a gateway: all gate-
ways accept all bundles.

We found that significant performance bottlenecks ar-
ose during these opportunistic intervals of data transfer.
A detailed analysis is given in Oliver and Falaki [8].

We now describe intra-region routing in more detail.
Consider a bundle with bundle ID B that is to be sent from
user U1 at kiosk K11 to user U2 at kiosk K12, with both kiosks
in region 1. The bundle’s destination field is set to U2 � K12

and kiosk K11 gives it to every ferry that passes by. When
one of the ferries goes past kiosk K12, during the metadata
exchange, the kiosk tells the ferry that it has user U2, and
the ferry tells the kiosk it has a bundle with ID B for U2

at the kiosk. The kiosk checks if U2 has already received
this bundle, if not, the bundle is transferred to the kiosk,
and subsequently given to U2. If another ferry with B goes
past K12, during metadata exchange it will find that K12 has
already received B, and filter it from the queue. If for any
reason, the first ferry fails, the second ferry will find that
B did not reach K12, and can deliver the bundle. This dem-
onstrates how flooding increases reliability. Note that extra
copies of B in the system eventually time out and are
deleted.

4.3. Routing between kiosks and the Internet

We first consider routing in the Internet to kiosk direc-
tion. Data from legacy servers destined for kiosk users
reaches the user’s region’s proxy in one of two ways. Either
the user tells a legacy server to send (‘push’) data to the
proxy (for instance, by registering the proxy as its mail or
instant messenger server), or an application-specific proxy
plugin pulls data from the Internet on behalf of the user.
This data is then sent to one or more of the gateways to
be given to all ferries that go past the gateways.

Proxies are located in bandwidth-rich data centers, but
gateways are connected to the Internet typically using
slow dial-up or DSL links. Given that the link between
the gateways and the proxy is the bottleneck, ideally the
proxy should choose only one gateway in the region to
send each bundle to, rather than flooding it to all the gate-
ways in the region. If the schedules of ferries are known to
the proxy, we have developed a routing and scheduling
algorithm at the proxy that can choose the best gateway
for each bundle and decide the order in which they are sent
in a way that minimizes the overall delay Guo [9]. More-
over, this algorithm can also enforce arbitrary bandwidth
allocation among kiosks. If bus schedules are not known
(which is the usual case), then the proxy has no choice
but to flood it to all the gateways, and this is our currently
implemented solution.

We now describe intra-region routing in more detail.
Consider a user U1 at kiosk K11 in region 1, that receives
data at its proxy P1. When data arrives at the proxy, the
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
OCMP application plugin translates from the application-
specific user ID to the user’s KioskNet GUID. For instance,
a user with email address u@kiosknet.net may be trans-
lated to U11.K11.Region1.egov.kiosknet.org. The data is
encapsulated into an OCMP bundle B and this destination
address is added to the header. The OCMP bundle is issued
to the DTN CO (Connection Object) to be transmitted to the
gateway. Each ferry passing by the gateway is given B. Sub-
sequently, the metadata exchange and bundle transfer
happen exactly as described in Section 4.2 and the bundle
is eventually received at the kiosk K11.

We now consider routing in the kiosk to Internet direc-
tion. When a user at a kiosk wants to send data to the
Internet, OCMP creates a bundle with a destination GUID
set to the GUID of the region’s proxy. The bundle is either
sent directly to the proxy on a TCP or SMS connection, or
flooded using DTN CO. If DTNCO is used, then the bundle
is given to all passing ferries, which transfer it to all the
gateways within their reach. The gateway is configured
with the host name of the proxy and uses DNS to get and
IP address. On receiving a bundle whose destination GUID
is the proxy, a gateway first sends the bundle header to the
proxy. If the proxy has not yet received the bundle (from
another gateway in the region perhaps) then it asks the
gateway to transmit the entire bundle. Unlike the Meta
Data Exchange described in Section 4.2 this protocol has
to be run upon receipt of every packet as there is not
pre-computed list of pending bundles on for the gate-
way-proxy link. At the proxy, the OCMP daemon receives
the bundle, and passes it to a application-specific plugin
for further processing. For example, an OCMP bundle given
to an email application plugin would be sent to its eventual
destination using SMTP.

4.4. Routing between kiosks in different regions

We allow users at kiosks on one region to send data to
users at kiosks in other regions. This is expected to happen
rarely, yet may be critical for some applications. To do so,
at the sending region, bundles are flooded to reach that
region’s gateways, which transfer them to the destination
region’s gateways, where flooding delivers them to the
appropriate kiosk. This can be viewed as a composition of
the techniques described in the previous two subsections.
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://U11.K11.Region1.egov.kiosknet.org
http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

3 Of course, if a kiosk is also a gateway, then the proxy can send data
directly to the kiosk.

S. Guo et al. / Computer Networks xxx (2010) xxx–xxx 9
More precisely, we now consider the case where user U1

at kiosk K11 in region 1 wants to send a bundle B to user U2

at kiosk K21 in region 2. B’s destination field is set to the
U2’s GUID and the bundle is flooded to all the gateways
and kiosks in region 1 as described earlier. Because U2 is
not present at any kiosk in region 1, and this fact is discov-
ered during metadata exchange, the ferry does not transfer
any bundles to any of the kiosks in region 1. Ferries do not
carry out metadata exchange with gateways, and so all
gateways get all bundles. On receiving B, a receiving gate-
way uses the bundle’s destination field to determine the
destination region. If the destination region was not the
same as the source region then we need to transmit
the bundle to the gateways of the remote region via the
internet. In our initial design we use DNS to map from
the destination region to the set of gateways (see Sec-
tion 4.5). This allows a source region gateway, to transfer
the bundle to all the gateways in the destination, from
where it is subsequently flooded (we need to send to all
the destination region gateways because the source region
gateway does not know which destination region gateway
is the best choice, or indeed a correct choice, to reach a par-
ticular kiosk). Although this scheme is correct, it is ineffi-
cient in two ways. First, the source gateway needs to
send multiple copies of the same bundle over a bottleneck
link. Moreover, it prevents the destination region’s proxy
from choosing the best gateway to reach a particular kiosk.
Therefore, in the current release of our software we have
the source region send the bundle to the destination re-
gion’s proxy, instead of directly to a destination region
gateway. We describe this in more detail in Section 4.5.

4.5. Support for mobility

KioskNet users will want to send and receive data from
the nearest available kiosk as they move from place to place.
This mobility is essentially offline, without the requirement
to preserve transport sessions as users move, but to relocate
data to their new point of attachment. This subsection
describes how KioskNet supports this functionality.

4.5.1. Globally unique IDs
The key to supporting mobility is to decouple identifiers

from locations. Each KioskNet user has a hierarchical loca-
tion-independent globally unique ID (GUID), as described
in Section 4.1. Though hierarchical in form, the GUID is loca-
tion-independent and signifies the home location of the
user, that is, the kiosk owner who created the public key
for that user. In other words, it behaves as a flat name as
far as mobility is concerned. The current location of a user,
or, more precisely, the current location from which the user
would like to pick up bundles (also called its ‘custodian’), is
the kiosk identified by a Node GUID (and these are assumed
to be static). Users are also allowed to register with multiple
custodians in the same region. Since flooding based routing
is used, all matching custodians receive the data.

4.5.2. DNS-based location register
An Internet-based global DNS-based location register

stores translations from each GUID to the GUID of its cur-
rent kiosk location. This is a generalization of the classical
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
name-to-address translation. The location register also
stores, for each region, the set of gateways for this region
and their IP addresses. It also stores the IP address of each
region’s proxy.

When a user is created, or comes to a kiosk that is not
its ‘home’ kiosk, he or she registers with the kiosk. This
causes the user’s GUID to be added to that kiosk’s list of
users. Moreover, if this is a new user, or if the user has
moved to a new region, the ‘register’ application on the
kiosk controller creates a REGISTER message with the
user’s GUID and the kiosk’s GUID. This REGISTER message
is sent to the corresponding plugin on the proxy, which up-
dates the location register with the new kiosk location of
the user. This allows the location register to keep track of
the current region of every user, albeit with some delay.
4.5.3. Routing to a user who has moved
We consider two cases: a ‘near move’ where the user

moves to another kiosk in the same region (this is expected
to be the common case), and a ‘far move’ where the user
moves to another region (this is expected to be a rare event).
Note that we do not support far moves in the current re-
lease: this description below is, therefore, a paper design.

Near mobility: Near mobility is straightforward: when
the user registers with the new kiosk, it becomes part of
that kiosk’s metadata exchange with a ferry. Thus, bundles
destined for that user are received by the new kiosk, and
subsequently delivered to that user. Note that if a user
moves from one kiosk to another kiosk in the same region,
he or she starts receiving bundles immediately. This is be-
cause bundles sent to that user are flooded within a region,
and a ferry delivers all bundles to the kiosk(s) at which the
user is registered. Thus, in-region mobility is seamless. In-
deed, because storage is cheap, a user can choose to regis-
ter at more than one kiosk, and can pick up bundles from
any kiosk at which a registration exists: unclaimed bundles
are automatically garbage collected when their time-to-
live expires.

Far mobility: Far mobility is much harder to handle. We
consider three sub-cases, depending on whether the source
of the data is another kiosk in the same (new) region, a leg-
acy server on the Internet, or a kiosk in another region.

When a user registers with a kiosk in a new region, its
GUID is added to the list of registered users at that kiosk.
Therefore, it is able to receive bundles from other kiosks
in the same region using flooding and metadata exchange,
as usual. This handles the first sub-case.

We now consider the case when the source of data is a
legacy server on the Internet. In the current version of our
software, this data is received by an application plugin at
the original proxy associated with that user. Before for-
warding it to a gateway, the proxy checks the location reg-
ister to find the new region of the user (if any) and the set
of associated gateways. It then floods a copy of the data to
each gateway in that region, because it does not necessar-
ily know which gateway can reach which kiosk.3 This is
correct, but inefficient.
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

10 S. Guo et al. / Computer Networks xxx (2010) xxx–xxx
In future versions, we plan to remove this inefficiency
by allowing users to switch proxies as described next.
When a proxy gets a REGISTER message from a user whose
GUID’s name hierarchy identifies it as a non-local user, the
proxy instructs the proxy for the previous region of that
user (which it determines from the location register) to
transfer the user’s OCMP state to itself. This allows the
new region’s proxy to fetch and receive data on behalf of
the user. This additional processing allows a user who
has moved to a distant region to use a nearby proxy, in-
stead of having to use a distant proxy. When a user needs
to receive data from the Internet, therefore, it is received
by the new proxy. This data is sent using OCMP and DTN
to a gateway in the new region, and then flooded, as usual,
within the region.

The third sub-case is when a user who has moved to a
far region is to receive data from another region. This is
not supported in the current version of our system. In a fu-
ture version, we will support it as follows: When a gateway
gets a bundle, instead of always giving it to the local
proxy’s DTN bundle agent, it looks up the bundle’s destina-
tion field in the location register to find out whether the
bundle should be sent to the region’s own proxy, or a dis-
tant proxy. If the destination is the region’s own proxy,
then it forwards the bundle to that proxy, as usual. Other-
wise, it uses DNS to find the IP address of the proxy to
which it should send a bundle, and sends the bundle to
that proxy. Bundles that arrive to a proxy from a remote
gateway are handed to the OCMP scheduler for transmis-
sion to the best gateway, as decided by the algorithm in
Guo and Keshav [4].

Note that if a user moves from one region to another re-
gion, bundles will be sent to the wrong region until the
DNS back end is updated. Although this is a problem, we
anticipate that its effect will be small in practice because
inter-region travel is likely to be rare. Besides, if an SMS
CO is available, the interval from the time the user registers
its new location to the time that the back end is updated
will be small. If neither assumption holds, we need a way
to forward wrongly routed bundles. A protocol to do so is
described in Seth et al. [3], but we have not implemented
this algorithm in our current implementation.
5. Security architecture

We would like KioskNet to be secure enough to serve as
the basis for secure transactions that arise in applications
such as rural banking, microfinance, tax and bill payment,
and land registry. This requires it to meet the requirements
of four distinct groups:

� KioskNet Franchisers: Franchisers, usually non-govern-
mental organizations (NGOs) deploying KioskNet, are
concerned with the integrity of their KioskNet compo-
nents (gateways, ferries, kiosk controllers and proxies)
and would want to detect, if not prevent, the misuse
of their infrastructure by any of the entities named
below, including competing franchisers.
� KioskNet Franchisees: Franchisees (i.e. kiosk operators)

are concerned with the security of their kiosk terminals
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
and would want protection against malware. Franchis-
ers can trust franchisees to issue credentials to users
(usually in exchange for a fee), but cannot trust them
with user data. In other words, franchisers can create
users, but once created, should not be allowed to snoop
on user data.
� KioskNet Users: Users are concerned with the confidenti-

ality and integrity of their data despite using untrusted
ferries and snooping kiosk operators.
� Application Service Providers: Depending on the type of

service they provide, application service providers
(ASPs) would want franchisers to guarantee the integ-
rity of their software when deployed on a KioskNet.

We satisfy these requirements through a combination
of standard cryptographic techniques. In particular, we
extensively use a Public Key Infrastructure (PKI) to encrypt
data and authenticate users. Although well known, PKI has
often been thought to be too hard to deploy in the field. In
our case, because every KioskNet user and role is a part of
the same system, we have a ‘closed universe’ with a single
trusted root certificate authority, i.e. the University of
Waterloo. This greatly simplifies the problem. Thus, all
the entities named above are issued unique credentials
including a 2048-bit RSA private key and a corresponding
public key certificate signed by a chain of trust that origi-
nates from the University of Waterloo.

5.1. Certificates

All the entities named above are issued unique creden-
tials including a 2048-bit RSA private key and a corre-
sponding public key certificate. Public key certificates are
issued and signed hierarchically, forming chains in the
standard fashion. That is, a secure central root CA server
at the University of Waterloo certifies the public key of a
trusted franchiser using its own private key. This signature
is stored in the form of an X.509 certificate. Franchisers, in
turn, issue certificates to their franchisees and ASPs operat-
ing in their region. Franchisees automatically certify users
registered at their kiosks at the time of user creation. Sim-
ilarly, all KioskNet infrastructural components, such as
gateways and ferries, are issued unique credentials by
the franchisers that maintain them. Public key certificates
for users, franchisees and ASPs are periodically broadcast
throughout a franchiser’s region through the use of a pub-
lic key database maintained at the proxy and replicated at
all kiosk controllers. This allows secure messaging among
the components and users without the need to query a
central public key repository, which can be expensive in
a disconnected environment. Even with 10,000 users, each
with a 2 KByte X.509 certificate, this only takes 20 MBytes,
which can be disseminated without too much trouble
using KioskNet ferries.

5.2. Infrastructure integrity

The security of KioskNet infrastructure is ensured
through the use of digital signatures on all remote
commands and software updates issued by franchiser
administrative personnel. We are mostly concerned with
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

S. Guo et al. / Computer Networks xxx (2010) xxx–xxx 11
attacks on kiosk controllers, because the devices on ferries
and gateways are harder to attack, and, moreover, never
see unencrypted user data. To prevent attacks on kiosk
controllers, franchisees are not given root access to de-
ployed kiosk controllers, preventing them from modifying
the software on these systems. An encrypted root directory
at the kiosk controller prevents attackers from removing
the device’s hard disk and accessing private information
offline (e.g. mounting it on another Linux machine).
Industry-standard practices such as the use of intrusion
detection systems and firewalls can be additionally used
to protect KioskNet components against remote attack
through their network interfaces.

5.3. Protecting recycled PCs

Recycled PCs (or terminals) are protected against
viruses and other malware by forcing them to boot from
read-only disk images stored in tamper-evident kiosk con-
trollers. Because only franchiser administrative personnel
are permitted to update these disk images, franchisees
can be assured of the integrity and security of the operat-
ing system and applications running on their kiosks.

The measures taken to protect rural kiosks described
above also provide ASPs with assurance of the integrity
of the platform their applications are deployed on.
Additional security can be provided by ASPs issuing signed
certificates for their application binaries, allowing users
and franchisees to verify their integrity as required.

5.4. User data protection

User data is never stored at a terminal. Instead, it is
stored in kiosk controllers and is secured by creating en-
crypted virtual volumes for each user’s home directory
keyed with a user-specific file-system key. The file-system
key is encrypted with the user’s password, and this en-
crypted value (similar to the value in /etc/passwd) is also
stored in the kiosk controller’s file system.

A user’s encrypted volumes are exported over NFS for
mounting at kiosk terminals when users login with a valid
Unix password at a terminal. Linux’s Pluggable Authentica-
tion Module (PAM) is used to automate the decryption of
these volumes when users login and their encryption when
users log out. Users can transparently read and write to
their encrypted home directories through our use of the Li-
nux DM-Crypt disk encryption module. Because user data,
including private keys, is stored in these encrypted home
directories, even attackers with root access are unable to
view or modify the data. We emphasize that the user does
not need to remember their private key: instead, the user’s
private key is stored in the user’s home directory, and the
directory is encrypted with a key derived from the user’s
Unix password. Thus, the user only needs to remember
his or her Unix password. This reduces the cognitive bur-
den on potentially semi-literate users.

In the event that a user forgets his or her password, the
file-system key used to encrypt the directory is also
encrypted with the franchiser’s public key, and safely stored
with the franchiser. A user who forgets the account
password needs prove his or her identity to the franchiser
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
to recover the file system encryption key. He or she is then
given a new Unix account, and the password for this account
is then used to re-encrypt the file-system encryption key.
This allows for safe recovery from a lost password.

To support privacy for users who are not comfortable
using passwords, we envision the use of biometric devices,
such as thumbprint readers. We have not, however, incor-
porated these devices into our system.
5.5. Communication privacy and integrity

In-flight user data that requires privacy and authentic-
ity is encrypted and signed at kiosk terminals before it is
transferred to the kiosk controller for forwarding to other
KioskNet components along its way to the proxy. This en-
sures end-to-end security of user data, in that this data
cannot be read, fabricated or tampered with while in tran-
sit within KioskNet.

Note that the traditional approach to ensuring end-to-
end secure communication, such as that used in SSL, is to
use Public Key encryption to generate a shared secret and
use it as a session key for ciphers such as AES. However
due to the delay-tolerant nature of the network the time
taken by the handshake necessary for generating a shared
secret precludes this approach. Using Public Key encryption
exclusively is also not feasible as it is computationally
expensive for large data sizes. We therefore use AES-CBC
with randomly generated 256 bit keys to encrypt data. This
key is encrypted using the public key of the recipient and ap-
pended to the bundle. Hence recipients can decrypt the data
by first decrypting the AES key using their own private keys.

When combined, the security measures described
above serve to protect KioskNet against a diverse set of at-
tacks, ranging from simple wireless packet sniffing to more
sophisticated attacks that involve removing an KioskNet
component’s hard disk and booting it with a LiveCD to gain
root access and read or modify the data stored in it.

More details of this solution can be found in Rahman
[10].
6. Operationalizing the infrastructure

6.1. Terminal support

We allow recycled PCs with or without hard drives to
boot over local ethernet from a kiosk controller. The recy-
cled PCs are only required to have a BIOS and an ethernet
card that supports PXE boot. A recycled PC downloads a Li-
nux kernel from the kiosk controller using PXE and TFTP,
and after the kernel is executed, mounts its root file system
from the kiosk controller via NFS. To reduce the load on the
kiosk controller, it only serves files; all applications are run
locally on the recycled PCs. Since all program binaries are
read-only, we can guarantee a virus-free environment.
Alternatively, if a recycled PC has an operating system in-
stalled on its hard drive, a user can elect to boot into that
system at boot time. Note that by placing all user files on
the kiosk controller, which could even offer RAID storage,
we reduce the dependency of our system on the PCs, allow-
ing us to use even marginal hardware.
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

Table 1
Installation and maintenance tasks for office and field.

Installation Maintenance

Office Planning, ordering, software
installation

DTN and sync
updates

Field Physical installation USB key updates

12 S. Guo et al. / Computer Networks xxx (2010) xxx–xxx
As mentioned in Section 5, to protect user data, each
user’s home directory is stored in a separate encrypted
virtual volume keyed with his/her login password. These
virtual volumes are stored on the kiosk controller and
exported to kiosk terminals over NFS with the rest of the
terminals’ root file system. The process of mounting and
decrypting volumes when users login, and the reverse
when users logout, is automated by the Mount extension
to Linux’s Pluggable Authentication Module (PAM).

6.2. Wireless configuration

The kiosk controller in every village is configured as an
open access point, therefore all the residents of the village,
including NGO workers and other mobile device owners,
can associate to it, and take advantage of its services.
KioskNet gateways are also configured as open access
points. All the wireless interfaces in a KioskNet deploy-
ment share the same ESSID (‘‘KioskNet”).

Ferries in KioskNet serve two roles. When communicat-
ing with a kiosk controller or a KioskNet gateway they are
wireless stations. The ferries can also act as an ad hoc node,
to receive data from mobile users, possibly bus passengers.
The Atheros virtual interface feature, helped us easily
implement this configuration.

6.3. User management

We allow kiosk owners to perform user management
and other system administration tasks through Webmin
[11], a web-based graphical user interface for configuring
Unix-like systems. With webmin, kiosk owners can man-
age their systems without knowing how to use the under-
lying Linux OS. Webmin also provides a simple interface
for kiosk owners to modify their systems, thereby reducing
the chance of system failure resulting from human errors.

User credentials (i.e. an RSA private key and corre-
sponding X.509 public key certificate signed by the local
Franchiser) are automatically created through an extension
to webmin when user is first registered at a kiosk. These
credentials are stored in the new user’s home directory,
which is placed in an encrypted virtual volume, as de-
scribed earlier in Section 5.

Once a user’s certificate is issued by the local CA client it
must be propagated to all kiosks. We do so by first updat-
ing a central public key database we call the whitepages
directory. The kiosk controller generates a signed register
message containing the user’s GUID and X.509 public cer-
tificate. This message is transmitted to a gateway using
mechanical backhaul and subsequently to the Whitepages
server using a TCP connection. The server then verifies the
certificate chain and the signature. If the chain and signa-
ture are valid then the user’s certificate is added to the
whitepages directory. It is also possible to update a stale
certificate using the same register message or to remove
a certificate using an unregister message.

To give all kiosks direct access to the whitepages direc-
tory it is replicated on all kiosks. Updates to the central
database are periodically broadcast throughout the net-
work to synchronize the copies as described in detail in
Section 7.1.2.
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
6.4. Software installation

We have been careful to ensure that the KioskNet system
can be installed and deployed with the least possible effort.
We assume that the deployment will be conducted by a
non-governmental organization (NGO) that has an Inter-
net-connected central office, and that the NGO has a team
of field technicians who would do the actual deployment
in the field. Accordingly, we divide the installation (and
maintenance) process as described in Table 1. To minimize
costs, the installation process is designed to take place
mostly at the central office. Here, a few trained personnel
can carry out the following installation steps on behalf of
a large number of kiosks:

1. Planning: Deciding the number of kiosks, vehicles, and
gateways of the system. We have developed a deploy-
ment guide KioskNet Deployment Guide [12] to help
NGOs in this process.

2. Ordering appropriate equipment: The deployment guide
gives detailed instructions on the equipment compati-
ble with our system.

3. Software installation and configuration: This step
requires loading hard drives with software images from
our distribution. We ship our software in the form of a
LiveCD DVD A technician can boot any PC from this
image into live Linux. The installer then attaches a
USB-to-AT2500 IDE connector and an external 2.500 hard
drive to the PC. The installation software copies modi-
fied Debian Linux images onto the drive through the
USB interface. After this copying process, which lasts
approximately 12 min, the installation software applies
user-specified configuration parameters (e.g. IP address,
and wireless channel) to the disk image. The disk image
is now ready to be deployed in the field. The same pro-
cess is used to create disk images for kiosk controllers,
ferries, gateways, and the proxy.

In the final step, non-expert field personnel physically
install the equipment in the villages and ferries. Field tech-
nicians do not need to have any knowledge of Linux.
6.5. Maintenance and monitoring

KioskNet needs to be deployed in areas with little or no
other infrastructure. Therefore, one of our key design goals
was to build a system that could be maintained with the
least possible effort by semi-skilled field technicians. We
also desired a means to cheaply, securely, and reliably
monitor both ferries and kiosks from an NGO central office.
These two features would allow a handful of skilled work-
ers at the central office, helped by a larger number of field
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

S. Guo et al. / Computer Networks xxx (2010) xxx–xxx 13
technicians, to support hundreds or even thousands of
kiosks and ferries. In this section, we describe KioskNet
maintenance and monitoring.

6.5.1. Upgrades
Routine software maintenance requires software run-

ning on kiosk controllers to be upgraded and patched from
time to time. To avoid having technicians travel to each
kiosk location to install or upgrade software, we provide
a sub-system for centralized management and mainte-
nance of kiosk controllers. This mechanism, similar to the
Disruption Tolerant Shell in Lukac et al. [13], is described
next.

In KioskNet terminology, an update is a zipped and
signed file that contains a executable script, the recipients’
GUIDs, a unique sequence number, and all other files that
the script needs for execution (this is similar to a RedHat
RPM). When a KioskNet component receives an update, it
first checks the signature. An authentic update is uncom-
pressed in a pre-specified location, and the script is then
run with root privilege in a forked shell. When the shell
terminates, its sequence number is recorded along with
the exit value of the controller script and output logs are
submitted to the logging sub-system (described next).

Updates can reach KioskNet nodes over one of three
channels. The normal DTN/OCMP mechanical backhaul
channel is the preferred transmission mechanism. When
this channel does not work, the central office can choose
to flood updates to all KioskNet nodes. In rare cases when
a node is not reachable using any of these two channels, a
field technician can apply the update using a USB key – on
detecting an authenticated USB key, the controller reads
the update on the key and applies it, just as if it had re-
ceived it over the wireless link.

6.5.2. Logging
KioskNet has been designed to be robust and tolerant to

failures. However, both DTN and OCMP, which are critical
software layers, are under active development. Therefore,
software failure is a distinct possibility. When a failure
does occur, central office technicians require a means to
collect and debug system logs that does not rely on OCMP
or DTN. We have, therefore, designed and implemented a
mechanism that floods logs across a disconnected network
to the Internet using opportunistic connections. We call
this application log-flood.

Log-flood periodically compresses the contents of /var/
log/, timestamps it, and signs it with a sequence number.
It then periodically sends a broadcast ping on the local
WiFi network to detect neighboring KioskNet components.
When a neighbor is detected, they exchange log archives
opportunistically using the standard Unix rsync utility.
For secure transfer, we actually tunnel rsync over ssh using
an ssh key installed by the central office when configuring
the KioskNet component.

Each KioskNet component floods log archives to each
other until the files reach a gateway. To prevent redundant
flooding, the gateway does not flood logs to neighboring
ferries; it simply forwards log archives to the proxy on
the Internet. The proxy subsequently acknowledges the
delivery of each log archive and forwards an acknowledge-
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
ment file to the gateway. Acknowledgement files are then
transferred from the gateway to neighboring ferries, and
flooded back across the disconnected network. When a
KioskNet component receives an acknowledgement file, it
deletes the originating log archive. Acknowledgement files
eventually expire on each component. In this way, by mim-
icking DTN using rsync, we allow robust log propagation.

6.5.3. Heartbeats
To further monitor the activity of KioskNet deploy-

ments each KioskNet gateway, which is always connected
to the Internet, sends periodic heartbeats to a central ser-
ver in Waterloo. Heartbeats contain information such as
the Linux uptime and the DTN reference implementation
statistics. The heartbeat transfer is secured through SSH
keys. The heartbeat application checks for updates every
time it sends a heartbeat, therefore we can add more fields
to the heartbeat later.
7. KioskNet applications

KioskNet applications communicate with legacy servers
on the Internet on behalf of disconnected users. Architec-
turally, applications run on top of the OCMP layer and have
two components. The primary component runs on the
proxy and a (typically) small helper application runs on
the kiosk controller. Applications may be written in any
language, including shell scripts. They pass application
data to and from the OCMP layer using a directory based
API (described next). Alternatively, they may run as proxies
to intercept socket calls, and tunnel data through KioskNet.

7.1. Directory API

The Directory API is a branch of the file system where
applications place data for OCMP to process Seth et al.
[3]. Each KioskNet user has its own directory within the
Directory API, and each application has its own branch
within each user directory. Each application directory has
an upload and download directory to hold data going to
and coming from the proxy respectively. These directories
hold configuration files that indicate the processing that
needs to be done on the files, and can be viewed essentially
as a way to pass application-specific parameters to OCMP.

When data arrives in a kiosk download directory or a
proxy upload directory, OCMP invokes an application call-
back specified in the configuration file to handle the newly
received application data. We rely on another application,
the directory watcher, to periodically scan the directories
under the Directory API to check for newly added files,
which are then passed to OCMP over a loop-back socket.
Further details of the Directory API and Directory Watcher
can be found in Seth et al. [3]. Although the use of a direc-
tory based API is slightly less efficient than passing data to
OCMP directly, we found that it greatly eased application
integration. In any case, the added delay incurred by poll-
ing for updates is negligible compared to the time required
to transport data over a mechanical backhaul.

We implemented a few sample applications using the
directory API.
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

14 S. Guo et al. / Computer Networks xxx (2010) xxx–xxx
7.1.1. Flickr
This application allows a user at a kiosk to upload pic-

tures to flickr.com. The user takes pictures with his or
her WiFi-enabled camera phone. The client-side applica-
tion on the phone submits the picture files to OCMP using
the Directory API. These files are automatically transferred
to the kiosk or the ferry, and eventually arrive at the proxy.
The proxy-side plug-in for the Flickr application then auto-
matically uploads the pictures to the user’s album using
the user’s credentials through the XML-RPC based API pro-
vided by flickr.com. We anticipate that this is useful for
NGOs that want to monitor rural infrastructure.
7.1.2. Database synchronization
We anticipate that a major use of KioskNet will be infor-

mation distribution for data such as agricultural databases
and property records. Furthermore, every kiosk must have
access to the whitepages directory of public certificates in
order to initiate secure communication. Therefore, we
wrote DBSync, a robust database synchronization mecha-
nism. DBSync periodically takes a snapshot of a central
Postgres database using the ‘‘pg_dump” utility. The snap-
shot is distributed to all kiosk controllers using OCMP’s
Directory API’s broadcast facility. Kiosk controllers have a
local database and can use the ‘‘pg_restore” utility in con-
junction with the snapshot to synchronize with the master
database. The pg_dump and pg_restore utilities of Postgres
lend themselves to this Diff-Patch approach as they use a
sequence of insert commands to capture database state
as opposed the actual commands applied to the database.
Hence the size of the snapshot is independent of the num-
ber of changes to the database.

The snapshot size is however dependent on the number
of records in the database. Hence this approach is not scal-
able to large databases. It is also inefficient as a small
change in database state will require the transfer of the en-
tire database to all nodes. To ameliorate this we use the
Unix Diff and Patch utilities. All database copies, including
the master copy, are initialized to the same blank state and
we generate a local snapshot. To synchronize copies with
the master we generate a second snapshot at the master.
The two snapshots are compared using the Diff utility.
The original snapshot is discarded and replaced by the
new snapshot and the differences between the two, the up-
date, is propagated to all nodes in the region. Upon receipt
of the update a node uses the patch utility to combine the
original snapshot with the update. This results in all nodes
having the same updated snapshot as the master. We can
now use the pg_restore utility to update the database state.
This allows us to keep a large database synchronized with
minimal overhead as only the changes are have to be
transmitted.
7.2. Secure Directory API

Building on the Directory API, the Secure Directory API
provides a simple interface for end-to-end secure and
authenticated communication. We envision the Secure
Directory API being used for a variety of applications, such
as bill payment, e-governance, and rural banking.
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
For every upload and download directory in the Direc-
tory API, there is a corresponding ‘‘secure upload” and ‘‘se-
cure download” directory. A file created in the secure
upload directory is encrypted with a nonce using AES
256 with Cipher Block Chaining. The nonce is then en-
crypted with the recipient’s public key. We follow this de-
sign because encrypting large amounts of data using RSA
encryption is computationally very expensive. Using solely
AES encryption is also infeasible as the delay-tolerant nat-
ure of the network will lead excessive delays in key
negotiation.

We have described the procedure to insure secure com-
munication however to support applications such as bank-
ing we also require robust mechanisms for authentication
and non-repudability. To this end we compute a SHA-1
hash of each secure bundle and then sign it using the send-
ers private key. This signed hash is appended to the secure
bundle and is used to authenticate the bundle at the
receiving node. This secure authenticated bundles are then
output to files in the upload directory of the Directory API.
Note that as each bundle is encrypted such that it can only
be deciphered by a single user hence if a bundle is ad-
dressed to multiple users then multiple copies of the same
bundle are written to the directory API upload directory,
each copy encrypted for a different user.

The files are then transmitted using the Directory API
and appears in the download directory of recipient(s).
Any delivered files that are marked as ‘secured’ are de-
crypted and copied to a secure download directory in
plain-text form. The secure directories are stored within
the user’s encrypted home directory. The secure data is
also authenticated using the sender’s certificate chain
and the digital signature contained in each secured bundle.

7.3. Email

The store-and-forward, delay-tolerant nature of SMTP
fits perfectly within the KioskNet architecture. Email ser-
vice within KioskNet consists of five components, as shown
in Fig. 5:

� Client: The client application can be any standard email
client such as Thunderbird or Outlook Express. The cli-
ent runs on the recycled PC. The email client is config-
ured to fetch a user’s email from the kiosk controller
using IMAP. Its outbound SMTP server address is also
configured to be the kiosk. From the perspective of the
email client and its user, emails are sent and received
as if the recycled PC was connected to the Internet.
� uw-imap: Any IMAP server can be used to serve emails

from the kiosk controller to the email client running on
the recycled PC. We chose to use UW-IMAP because it
supports the widely-used mbox family of email collec-
tion formats, has a small memory footprint, and was
simple to deploy compared to other open-source IMAP
servers. The IMAP server gets activated and picks bun-
dles from the bundle store only when the user logs
on; therefore, if the user moves to a different location,
then the bundles will eventually time out and will be
retransmitted by the proxy to the new location of the
user.
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

Fig. 5. KioskNet data path when used to send email from a kiosk to the Internet.

S. Guo et al. / Computer Networks xxx (2010) xxx–xxx 15
� sendmail: Sendmail implements the SMTP protocol
between the email client and kiosk controller and
between the proxy and legacy SMTP servers.
� Kiosk controller component: The kiosk controller compo-

nent of KioskNet’s email service is implemented as a
plugin to sendmail (milter). When receiving emails sent
from the recycled PC, the plugin is responsible for
intercepting SMTP traffic from the email client and
compressing it for transport across to the disconnected
network. When receiving an email from a ferry through
OCMP, this component translates email from SMTP for-
mat into mbox format and adds it to the user’s inbox.
� Proxy component: The proxy component is also imple-

mented as a sendmail filter. This component receives
emails destined for KioskNet users from SMTP servers
on the Internet. Like its kiosk controller counterpart,
emails are compressed for transport. When handing
emails sent from kiosk users, the proxy component sim-
ply decompresses the outbound message and passes it
to sendmail for delivery.

8. Cost structure

By design, our solution is low-cost. For instance, we
estimate that to provide minimal connectivity to a popula-
tion of about one million people will require a total capital
expenditure of only about $300,000 or 30 cents/person.
More extensive coverage will probably cost ten times as
much, but still less than a one-time cost of $5 per person.

We now present some cost figures. These figures are
merely indicative because much depends on the actual
deployment environment, and issues such as the rate of
interest for small business loans, the import duty rate on
electronics, and purchase volumes.

Using off-the-shelf technology, the cost of an average
kiosk (which does not require solar power) would be about
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
$450. The main costs at a kiosk are for a single-board
computer (such as a Soekris net4501with an 802.11a/b/g
mini-PCI Atheros wireless card) which costs about $250,
for power remediation (using car batteries), which costs
about $100, and for a $100-recycled PC. Note that this cost
would be lower with volume purchases. Moreover, the cost
of a single-board computer will be lower if local single-
board computer manufacturers can be found, or if the
single-board computer is replaced with an XO laptop One
Laptop per Child (OLPC) [14]. On the other hand, costs
can be higher if there is need for solar cells (which cost
around $150), or high-power external antennas, which
can add another $250 to the cost.

Assuming that a network is to consist of four kiosks
connected by two buses, backhauled to two possible gate-
ways, the total cost for nine Soekris boxes and associated
peripherals would be approximately $3600. Considering a
kiosk every six villages, with a population of 1500 per vil-
lage, this effectively translates to 40 cents per person.

The operational expense, including the cost of field
technicians and capital depreciation on an 18-month sche-
dule is about $65/month. The main costs are for a field
technician, who can service about 20 kiosks, and the cost
of capital depreciation. Even assuming 10% penetration of
a target population of 2500 users, with a service charge
of $3.00/year, an operator can break even. Additional profit
can be generated by charging more per-user, by increasing
penetration, or by offering additional services, such as
computer literacy or sharing of digital photographs.

9. Pilot deployments

We deployed a prototype of our solution in Anandapu-
ram, a village in South India, during the week of May 16th,
2006. The bulk of the system was deployed over only two
days, which leads us to believe that the system can be
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

16 S. Guo et al. / Computer Networks xxx (2010) xxx–xxx
rapidly deployed even in environments with little existing
infrastructure. Each kiosk already had a Windows XP PC.
We deployed a Soekris net4801 at the kiosk, with a
40 GB Toshiba hard disk drive for local storage. The system
was connected to a roof-mounted omnidirectional anten-
na. Power came from a 42 AH deep discharge car battery
that was charged by two 1200 mA (12 V) Powerflex solar
panels mounted on the roof of the kiosk. We could also
have run our system from AC mains and relied on bat-
tery/solar power only for backup. In the car (see Fig. 1),
we used power from the car battery, but through an inver-
ter and the Soekris power supply, to mitigate against
voltage spikes. The car had a magnetically mounted omni-
directional antenna. The gateway was in Vishakapatnam.
Because the car was parked below the computer room, it
was necessary to place the omni antenna outside the build-
ing. Fig. 1 is a composite figure showing the deployed
system.

The purpose of the pilot deployment was to gain confi-
dence in the physical system (antennas, power supplies,
single-board computers) and their ability to operate with
minimal infrastructure and in poor operating conditions
– temperatures in the vehicle reached almost 50 �C! The
software infrastructure in the pilot, though, was not well-
tested. We have since then thoroughly stress-tested every
component of the system, and we released a robust imple-
mentation on July 20, 2007. This was deployed in Ghana
for medical consultancy in rural clinics by Luk et al. [15].

We have since then added yet another improvisation in
our system, of using USB keys to ferry data instead of mov-
ing vehicles. We call this system VLink [16]. We realized
that an important aspect that hindered large scale deploy-
ments of our system was to convince vehicle drivers to
mount Soekris boxes under their glove compartments,
and to regularly drive along certain routes. USB keys on
the other hand can lie in the hands of people who want
to actually use the system. Besides, they are low-cost and
extremely robust. We are now using these techniques for
content sharing across rural community radio stations, to
send software upgrades to these radio stations, and to
fetch logs to display dashboards of the latest activities at
different radio stations Gram Vaani [17], Understanding
[18]. As of May 2010, this is running in seven radio stations
in India, and we are building a content searching and
sharing application on the infrastructure. Albeit not all
the features such as multi-NIC support and multi-hop de-
lay-tolerant routing will be used, but the system is flexible
that if the need arises then it can be rapidly put to use.
10. Discussion

Based on our experiences with the prototype deployed
in the field Seth et al. [3], we have refined several key
architectural components as described below.
10.1. IBE vs. PKI

The initial design of the system provided privacy by
means of Hierarchical Identity-Based Encryption (HIBE)
Seth and Keshav [19], an extension to Identity-Based
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
Encryption (IBE). This allows a kiosk user to send authenti-
cated and encrypted messages to another user without the
need to know that user’s public key. Although useful, using
IBE turned out to be problematic in practice. IBE is essen-
tially controlled by a single entity (Voltage Security, Inc.),
which does not release source code and has stringent
licensing conditions for commercial use. We therefore
decided to replace IBE with our own PKI. There is a wide
assortment of open-source tools available for PKI, and we
were able to use them to build our own PKI in a matter
of a few developer-months.

10.2. Flat names and DHT vs. Hierarchical names and DNS

Our initial design used flat names and a DHT as a Home
Location Register to keep track of user location. Again,
although this is academically interesting, we found that
the DHT we used (OpenDHT) was both slow and unstable.
Moreover, OpenDHT is hosted on PlanetLab nodes that are
not found in most developing countries. From a technical
perspective, a DHT does not allow us to delegate location
management for sets of users to third parties. We therefore
decided to use hierarchical names for users (of the form
user.kioskname.regionname.organizationname.kiosknet.
org). This allowed us to use stable, well-tested, and fast off-
the-shelf DNS implementations for location management –
the location of a user is just an MX record that points to its
kiosk. Besides, we can now delegate part of the name space
to the organization responsible for a deployment. We think
that these two benefits more than compensated for the
loss of a flat name space and an infinitely-scaleable DHT.

10.3. Mechanical backhaul vs. use of all interfaces

When we started our work, we assumed that the only
way to reach a kiosk would be using mechanical backhaul.
In fact, kiosks are increasingly being reached by SMS/GPRS,
and soon, will also likely have WiMAX coverage. Therefore,
we decided to support a wide variety of connectivities,
with mechanical backhaul reserved for slow and delay-tol-
erant data. It turns out that using SMS for a control channel
brings numerous benefits, such as allowing us to detect
ferry failures, and to alert kiosks to turn on their WiFi
interface in anticipation of a ferry arrival. We believe that
this support of multiple-connectivity makes our system
more widely applicable.
11. Related work

Our work is most closely related to, and was inspired
by, the pioneering work by DakNet Pentland et al. [20],
DakNet [2]. However, we differ from DakNet in several
ways. To begin with, DakNet focuses only on communica-
tion, but KioskNet also supports a computing platform
based on recycled PCs. Unlike DakNet, KioskNet leverages
DTN for disconnection tolerance, and uses PKI for privacy,
confidentiality, and integrity. Moreover, KioskNet supports
multiple networks at each kiosk.

The work described here enhances our previously de-
scribed system for ‘mechanical backhaul’ described in Seth
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

S. Guo et al. / Computer Networks xxx (2010) xxx–xxx 17
et al. [3]. Our current system uses different naming,
addressing, and routing, as well as PKI-based security as
discussed in Section 10.

The goal of low-cost Internet access is shared by the
CorDECT project Jhunjhunwala et al. [21] and two well-
known long-range wireless projects- Digital Gangetic
Plains RuralNet [22] and WildNet Patra et al. [23]. These
are essentially communication technologies and can
potentially be integrated into KioskNet as connection ob-
jects. In other words, with KioskNet, mechanical backhaul
can be used to supplement long-range wireless for delay-
insensitive data, such as video content distribution, email,
and database updates.

In an alternative use of vehicles, the VIDAL Computer on
Wheels project ViDAL [24] provides a laptop equipped
with a CDMA modem in a car that periodically visits vil-
lages. Although equally low-cost, this forces villagers to ad-
just their schedule to that of the vehicle, instead of having
their data available to them at a kiosk when they need it.

The use of mechanical backhaul has also been studied in
pioneering work on data ferrying Zhao et al. [25], and re-
cent work on DieselNet UMass DieselNet [26]. However,
the focus of these projects has primarily been on routing
– instead, we take a whole-systems perspective for the
specific purpose of rural connectivity.

12. Conclusions

Rural communities worldwide can benefit from low-
cost Internet access. KioskNet attempts to meet this need,
focusing not only on the communication path but also
many related components, such as security, user manage-
ment, and log collection. By carefully examining the prob-
lem constraints, and integrating well-tested and
appropriate existing solutions, we have been able to build
a robust system for Internet access without increasing its
cost. We look forward to widely deploying it in the field.

References

[1] K. Toyama, Review of Research on Rural PC Kiosks, 2007, URL:
<http://research.microsoft.com/research/tem/kiosks/
KiosksResearch.doc>.

[2] Daknet, United Villages, 2007, URL: <http://www.unitedvillages.
com/>.

[3] A. Seth, D. Kroeker, M. Zaharia, S. Guo, S. Keshav, Low-cost
communication for rural internet kiosks using mechanical
backhaul, in: MobiCom’06: Proceedings of the 12th Annual
International Conference on Mobile Computing and Networking,
ACM Press, New York, NY, USA, 2006, pp. 334–345.

[4] S. Guo, S. Keshav, Fair and efficient scheduling in data ferrying
networks, in: Proceedings of the CoNEXT.

[5] E. Oliver, Exploiting the short message service as a control channel in
challenged network environments, in: Proceedings of the MobiCom
Workshop on Challenged Networks (CHANTS).

[6] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, R. Patra, Implementing
Delay Tolerant Networking, Intel Research, Berkeley, Technical
Report, IRB-TR-04-020, December.

[7] A. Seth, M. Zaharia, S. Keshav, S. Bhattacharyya, A Policy-Oriented
Architecture for Opportunistic Communication on Multiple Wireless
Networks, manuscript, 2006, URL: <http://blizzard.cs.uwaterloo.ca/
keshav/home/Papers/data/06/ocmp.pdf>.

[8] E. Oliver, H. Falaki, Performance analysis and evaluation of delay
tolerant networking, in: Proceedings of the Mobisys Workshop on
System Evaluation for Mobile Platforms (MobiEval).
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
[9] S. Guo, Algorithms and Design Principles for Rural Kiosk Networks,
University of Waterloo M. Math Thesis.

[10] S.U. Rahman, KioskNet Security, 2007, URL: <http://blizzard.cs.
uwaterloo.ca/tetherless/index.php/
Security_Architecture_Overview>.

[11] Webmin, Webmin: Web-Based System Administration, 2007, URL:
<http://www.webmin.com>.

[12] KioskNet Deployment Guide, 2007, URL: <http://blizzard.cs.
uwaterloo.ca/tetherless/index.php/Deployment_guide>.

[13] M. Lukac, L. Girod, D. Estrin, Disruption tolerant shell, in: Proceedings
of the 2006 SIGCOMM Workshop on Challenged networks, 2006,
pp. 189–196.

[14] One Laptop per Child (OLPC), 2007, URL: <http://www.laptop.org/>.
[15] R. Luk, M. Zaharia, M. Ho, P. Aoki, ICTD for healthcare in Ghana: two

parallel case studies, in: Proceedings of the Information and
Communication Technologies for Development.

[16] VLink, VLink URL: <http://blizzard.cs.uwaterloo.ca/tetherless/index.
php/VLink>.

[17] Gram Vaani URL: <http://gramvaani.org>.
[18] Understanding, M. the ICT Needs of Community Radio Stations, Z.

Koradia, B. Chandrasekharan, and A. Seth, Gram Vaani, New Delhi,
Technical Report.

[19] A. Seth, S. Keshav, Practical security for disconnected nodes, in:
Proceedings of the First Workshop on Secure Network Protocols
(NPSEC).

[20] A. Pentland, R. Fletcher, A. Hasson, DakNet: rethinking connectivity
in developing nations, Computer 37 (1) (2004) 78–83.

[21] A. Jhunjhunwala, B. Ramamurthi, T. Gonsalves, The role of
technology in telecom expansion in India, IEEE Communications
Magazine 36 (11) (1998) 88–94.

[22] RuralNet (Digital Gangetic Plains: DGP) 802.11-based Low-Cost
Networking for Rural India, 2007, URL: <http://www.cse.iitk.ac.in/
users/braman/dgp.html>.

[23] R. Patra, S. Nedevschi, S. Surana, A. Sheth, L. Subramanian, E. Brewer,
WiLDNet: design and implementation of high performance WiFi
based long distance networks, in: Proceedings of the NSDI.

[24] ViDAL, ViDAL Computer on Wheels project, <http://www.vidal.
org.in/node/6>.

[25] W. Zhao, M. Ammar, E. Zegura, A message ferrying approach for data
delivery in sparse mobile ad hoc networks, in: Proceedings of the 5th
ACM International Symposium on Mobile Ad Hoc Networking and
Computing, 2004, pp. 187–198.

[26] UMass DieselNet, 2007, URL: <http://prisms.cs.umass.edu/dome/
index.php?page=umassdieselnet>.

S. Guo received his B.Eng. in Computer Soft-
ware from Tsinghua University and M.Math.
in Computer Science from the University of
Waterloo. While he was a Master’s student at
the University of Waterloo, he worked, as part
of the KioskNet project, on scheduling algo-
rithms, building diskless Linux clients, and
maintaining the testbed. He is now working at
Google as a Site Reliability Engineer.
M. Derakhshani is a Ph.D. student at the
David R. Cheriton School of Computer Science
of the University of Waterloo. Mohammad
worked on the KioskNet project as a full-time
Research Associate after finishing his Masters
program. He received a M.Sc. in Mathematics
from the University of Waterloo, and a B.Sc. in
Computer Engineering from Sharif University
of Technology, in 2008 and 2006, respectively.
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://research.microsoft.com/research/tem/kiosks/KiosksResearch.doc
http://research.microsoft.com/research/tem/kiosks/KiosksResearch.doc
http://www.unitedvillages.com/
http://www.unitedvillages.com/
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/06/ocmp.pdf
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/06/ocmp.pdf
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/Security_Architecture_Overview
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/Security_Architecture_Overview
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/Security_Architecture_Overview
http://www.webmin.com
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/Deployment_guide
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/Deployment_guide
http://www.laptop.org/
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/VLink
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/VLink
http://gramvaani.org
http://www.cse.iitk.ac.in/users/braman/dgp.html
http://www.cse.iitk.ac.in/users/braman/dgp.html
http://www.vidal.org.in/node/6
http://www.vidal.org.in/node/6
http://prisms.cs.umass.edu/dome/index.php?page=umassdieselnet
http://prisms.cs.umass.edu/dome/index.php?page=umassdieselnet
http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

18 S. Guo et al. / Computer Networks xxx (2010) xxx–xxx
M.H. Falaki is a Ph.D. candidate at the Com-
puter Science Department of the University of
California, Los Angeles. He is generally inter-
ested in computer networks and operating
systems. Hossein received an M.Math in
Computer Science from the University of
Waterloo, and a B.Sc. in Computer Engineer-
ing from Sharif University of Technology, in
2008 and 2006, respectively.
U. Ismail finished his B.Sc. (Hons) in computer
science from the School of Science and Engi-
neering, Lahore University of Management
Sciences in 2007 and M.Math from the
Cheriton School of Computer Science, Uni-
versity of Waterloo. His research has focused
on delay and disruption tolerant network
architectures and centralized Wireless LAN
management. I am also working on building
scalable server architectures to support
interactive social games at Electronic Arts.
R. Luk is currently a senior engineer at Dimagi
Inc., a social enterprise which develops low-
cost technology to improve health systems in
19 countries around the world. Previously she
worked at Intel Research on a telemedicine
system for Ghana and founded AMITA Tele-
medicine, a Canadian non-profit. She holds a
Masters in Information Management and
Systems from the University of California in
Berkeley as well as a degree in Computer
Engineering from the University of Waterloo.
E.A. Oliver is a Ph.D. candidate in computer
science at the David R. Cheriton School of
Computer Science at the University of
Waterloo. His research is focused on building
large-scale, decentralized, mobile communi-
cation systems and the practical application of
delay tolerant networking.
Please cite this article in press as: S. Guo et al., Design and implementa
j.comnet.2010.08.001
A. Seth graduated with a Ph.D. degree in
computer science from the University of
Waterloo in Canada and is now an assistant
professor at IIT Delhi. He was a winner in the
Knight News Challenge of 2008 for his pro-
posal to develop low-cost systems for com-
munity radio. Aaditeshwar completed his
B.Tech in Computer Science and Engineering
from the Indian Institute of Technology at
Kanpur in 2002, and received the Ratan Swa-
roop Memorial Award given to the best all-
rounder of the batch. During his Ph.D. at

Waterloo, he co-founded a non-profit student organization, Udai, to help
NGOs in India with technical support.
M.A. Zaharia is currently a fourth year Ph.D.
student at UC Berkeley, working in computer
systems and networking. He got his under-
graduate degree at the University of Waterloo,
where he worked in Srinivasan Keshav’s
group on technology for developing regions.
S. Keshav is a Professor and Canada Research
Chair in Tetherless Computing at the School of
Computer Science, University of Waterloo,
Canada. Earlier in his career he was a
researcher at Bell Labs, an Associate Professor
at Cornell, and a co-founder of Ensim Corpo-
ration, a Silicon Valley startup. He is the
author of a widely used graduate textbook on
computer networking and has been awarded
the Director’s Gold Medal at IIT Delhi, the
Sakrison Prize at UC Berkeley, and the Alfred
P. Sloan Fellowship. His current interests are

in infrastructural issues underlying tetherless computing. Keshav
received a B.Tech from the Indian Institute of Delhi in 1986 and a Ph.D.
from the University of California, Berkeley, in 1991, both in Computer

Science.
tion of the KioskNet system, Comput. Netw. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.comnet.2010.08.001
http://dx.doi.org/10.1016/j.comnet.2010.08.001

	Design and implementation of the KioskNet system
	Introduction
	Overview
	Kiosks
	Ferries
	Gateways
	Proxy
	Legacy servers

	Communication architecture
	Protocol stack
	The SMS connection object
	Proxy
	Gateway
	Ferry
	Kiosk controller
	Terminal

	Data transport
	Naming
	Routing within a disconnected region
	Routing between kiosks and the Internet
	Routing between kiosks in different regions
	Support for mobility
	Globally unique IDs
	DNS-based location register
	Routing to a user who has moved

	Security architecture
	Certificates
	Infrastructure integrity
	Protecting recycled PCs
	User data protection
	Communication privacy and integrity

	Operationalizing the infrastructure
	Terminal support
	Wireless configuration
	User management
	Software installation
	Maintenance and monitoring
	Upgrades
	Logging
	Heartbeats

	KioskNet applications
	Directory API
	Flickr
	Database synchronization

	Secure Directory API
	Email

	Cost structure
	Pilot deployments
	Discussion
	IBE vs. PKI
	Flat names and DHT vs. Hierarchical names and DNS
	Mechanical backhaul vs. use of all interfaces

	Related work
	Conclusions
	References

