
Data Driven Smartphone Energy Level Prediction

Earl Oliver
eaoliver@uwaterloo.ca

Prof. S. Keshav
keshav@uwaterloo.ca

University of Waterloo
Waterloo, Ontario, Canada

Technical Report CS-2010-06

ABSTRACT
The body of mobile applications is growing at a near-exponential
rate; many applications are increasing in both scale, com-
plexity, and their demand for energy. The energy density of
smartphone batteries is increasing at a comparably insignif-
icant rate, and thus inhibits the practicality of these appli-
cations. Despite the importance of energy to mobile appli-
cations, energy is rarely considered by mobile applications
developers primarily due to lack of knowledge about users
and the absence of energy-aware developer tools.

We conduct a large-scale user study to measure the energy
consumption characteristics of 15500 BlackBerry smartphone
users. Our dataset is several orders of magnitude larger than
any previous work. Using this dataset we build the En-
ergy Emulation Toolkit (EET) that allows developers to
evaluate the energy consumption requirements of their ap-
plications against real user energy traces. The EET com-
putes the successful execution rate of energy-intensive appli-
cations across all users, specific devices, and specific smart-
phone user types. We also consider active adaptation to
energy constraints. By classifying smartphone users based
on their charging characteristics we demonstrate that energy
level can be predicted within 72% accuracy a full day in ad-
vance, and through an Energy Management Oracle energy
intensive applications can adapt their execution to achieve a
near optimal successful execution rate.

1. INTRODUCTION
The proliferation of smartphones is driving a near-

exponential growth in mobile applications. The design
of these applications is governed by several constraints
that are unique to mobile computing environments. Of
these constraints, energy is the one resource that when
depleted will render all of the applications on the mobile
device, including emergency and essential applications
such as the phone, inoperable. Unfortunately, while
global demand and use of mobile applications continue
to expand, the energy density of smartphone batteries
has grown at a comparably insignificant rate [18]. En-
ergy is therefore a critical resource that must be care-
fully considered in the design of mobile applications.

Although energy consumption has been widely stud-
ied [16, 12, 15, 1, 11, 8, 7], no previous study has taken
into account user charging characteristics.

In this work, we consider a class of applications that
must operate with little or no user-intervention, must
operate over long durations, and consume large amounts
of energy. Delay tolerant applications, such as [17, 13,
10, 2], are examples of this class of application. Each ap-
plication must forward data bundles autonomously and
operate continuously since being offline negates the pos-
sibility of exchanging data with neighbouring devices.
These applications also consume large amounts of en-
ergy due to their use of wireless network and file I/O
during opportunistic connections and can easily deplete
a battery if left unchecked. We are therefore faced with
the question of how to maximize benefit to the user
while minimizing impact.

We approach this complex question through a large-
scale user study that examines the charging character-
istics of smartphone users. Using this information, we
build the tools and libraries that allow mobile appli-
cation developers to adapt to increasing energy con-
straints. The contributions of this work are threefold:

• First, we build a dataset containing the smart-
phone usage and energy consumption character-
istics of 15500 BlackBerry smartphone users. Our
dataset contains over 700 years of cumulative data
from users spanning 23 timezones and every Black-
Berry device type released since early 2006.

• Second, we exploit user energy traces in our dataset
to build the Energy Emulation Toolkit (EET). Us-
ing this tool developers of energy intensive applica-
tion can determine the successful execution rate of
their application a priori, and alter their design or
tune algorithm parameters to reduce energy con-
sumption.

• Third, by classifying users into one of three groups
according to their unique energy consumption char-
acteristics we demonstrate that energy level can
be predicted to within 7% error within an hour
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and within 28% a full day in advance. Using our
prediction algorithm, we build the Energy Man-
agement Oracle (EMO) library. By querying the
EMO before executing an energy intensive oper-
ation, applications can adapt their execution to
achieve a near optimal successful execution rate.

We begin with an overview of our usage study and
the dataset that we have built. In Section 3 presents
the design and evaluation of the EET tool. Section 4
describes our user classification scheme, our energy level
predictor, and the EMO library. We conclude in Sec-
tion 5.

1.1 Related work
Rahmati et al. study how users consume the bat-

tery on their devices in [14]. This was the first pa-
per to qualitatively and quantitatively assess how users
consumed energy and provides preliminary insight into
charging behaviour, user interfaces for power-saving set-
tings, user knowledge, and user reaction to battery lev-
els. Their experiment consisted of ten users using un-
familiar devices over a one month period. Their ex-
periment driver also reduced the life of the device to
about 40% of its usual lifetime. In contrast, our study
consists of 15500 users running experiment software on
their personal devices for periods up to several months
in duration. Moreover, our experiment driver is fully
event driven and consumes less than 1% of additional
battery life.

In [4] Cignetti et al. present the design of an energy
model that estimates energy consumption with respect
to the actions performed in an application. Given that
today’s mobile devices are highly concurrent and that
energy intensive tasks may take place without user in-
tervention, actions performed by users are insufficient
indicators of future energy levels. Bellosa examines OS-
directed power management in [3]. In this work, sys-
tem activity is throttled to achieve a desired energy
consumption goal. This work is practical for homo-
geneous server workloads, but would not work under
the heterogeneous workloads of a personal computing
environment. In [15], Ravi et al. exploit a user’s lo-
cation (via cell tower) to predict when the user will
charge their device. Based on this prediction and the
current (expected) energy consumption rate, their work
determines the portion of the battery that can be used
by other applications and warns the user of potential
battery depletion. Unfortunately, all of these systems
require knowledge of the underlying hardware, and to
the best of our knowledge, no prior work has examined
the charging characteristics of the user.

2. SMARTPHONE USAGE STUDY
Our measurement study is focused on understanding

how smartphone users interact with their devices and

how they consume and replenish energy. We begin with
a brief overview of the measurement study driver and
data that we collect. We then discuss the top challenges
in implementing the driver and building a large-scale
dataset.

2.1 Measurement driver
To the determent of many user-centric experiments,

smartphones are often distributed to a mere 10-30 users:
fellow researchers, staff members, or undergraduates.
Although this has been a convention for several years
of mobile computing research (primarily due to con-
venience), this method of experimentation has several
significant flaws:

• Experiment-enabled devices are typically given to
participants on a temporary basis, which can affect
users’ interaction with the device and degrade the
accuracy of user-centric results.

• Participants are often unwilling to use an experiment-
enabled device as their primary/personal device,
which can further bias the accuracy of an experi-
ment.

• Participants are often intimately aware of their
role in an experiment, which may further bias the
results both positively and negatively.

Our measurement study is shaped by three high level
objectives. First, to achieve a high degree of accuracy,
we require several orders of magnitude more partici-
pants than any previous study [14]. Second, to achieve
this goal our measurement driver must run on a het-
erogeneous set of mobile devices with a diverse set of
provisioned capabilities. Finally, our driver just run
autonomously on participants’ personal mobile devices
and must therefore be production-grade software.

We develop two BlackBerry applications to collect the
desired data: the Standard Logger and the Background
Logger.

2.1.1 Standard Logger
The Standard Logger is an event-driven BlackBerry

application that runs continuously in the background
of a device. Upon installation, the logger records the
following information:

Backlight activity: we infer user-interaction with
a device by exploiting the fact that the device’s LCD
backlight being on is a necessary condition of user inter-
action. Using callbacks from the OS, the logger records
the time that the backlight turns on and turns off.

Idle counter: the OS maintains counter since the
last user gesture. The counter is reset whenever the user
presses a button, touches the screen, or moves a track-
ball on the device. The logger records the counter’s
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Figure 1: Screenshot of the Standard Logger.

value when the backlight turns off to determine the du-
ration that the backlight is on but the user is not inter-
acting with the device.

Charging activity: users’ battery charging behaviour
can be determined by recording when a device is plugged
and unplugged from an external power source such as
a USB cable or power adapter.

Battery level: the logger records the battery level
every ten minutes to determine how users consume en-
ergy throughout the day.

Soft shutdown: the logger records signals that the
device is powering on and off to account for inconsis-
tencies in the data. For example, a user may power off
a device when the battery is low, plug it in, unplug it
at a later time, and power on at a full charge.

Device type: to differentiate BlackBerry devices we
record the device type and OS version.

The logger contains a UI that allows study partici-
pants to observe aggregate statistics and a histogram of
their usage pattern throughout the week. Figure 1 illus-
trates a screen capture of the Standard Logger. Through
a menu users may upload the data manually or autho-
rize automatic weekly uploads to a collection server on
the Internet.

2.1.2 Background Logger
The Standard Logger alone was not capable of achiev-

ing our desired scale. We therefore partnered with a
major BlackBerry software developer to augment their
existing software quality logging tools with a simplified
version of the Standard Logger. We refer to this aug-
mentation as the Background Logger. The Background
Logger collects the same information as the Standard
Logger and uploads the data to the company’s servers
each week. In the remainder of this paper, we will refer
to both loggers generically as the Logger.

2.1.3 Assumptions
The Loggers makes one fundamental assumptions:

that the user does not run applications that program-
matically enable and disable the device’s backlight while
resetting the device’s idle time by simulating user input
(keystroke injections). Given that both operations are
rarely used by application developers, we consider these
to be reasonable assumptions in our study; however, we
do take steps (Section 2.2.3) to detect and discard in-
valid data.

2.2 Challenges
Achieving our three high-level experiment objectives

was challenging. We believe that other mobile researchers
can benefit from our insight on the following top four
challenges.

2.2.1 Volatile file systems
Logging data to a file is a standard technique to en-

sure persistent storage in the presence of power failures
or other interruptions. However, file systems can be
unmounted at any time either manually by the user or
automatically when connected to a PC. Adapting to
this problem by frequently flushing I/O buffers to per-
sistent storage can have a significant impact on battery
life. The Logger therefore exploits two trends among
BlackBerry users to provide reliable logging and save
energy: users maintain a high battery level and rarely
fully power off their devices. Our technique buffers log
data in volatile memory until uploading it to our col-
lection server each night.

2.2.2 Energy constraints
An application that has a noticeable impact on en-

ergy consumption will not be successful. In prelimi-
nary experimentation, we found that users were inti-
mately aware of their device’s normal battery life; any
noticeable or perceived decrease in battery life would
be attributed to the experimental application. As ob-
served in previous studies [14], polling a device’s state
can have a detrimental impact on battery life. The Log-
ger exploits callbacks from the operating system when-
ever possible. Unfortunately, an event driven model can
produce inconsistent sequences of events. For example,
when powering off a BlackBerry, we frequently did not
receive an event signalling that the screen was off un-
til after powering the device on. Similar scenarios were
observed when charging. When analyzing the output of
an event driven application, one must take into account
possible race-conditions in the underlying OS.

2.2.3 Third-party application intervention
User-centric studies must take into account interven-

tion by third party applications. For example, an appli-
cation that records a user’s battery consumption can be
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(a) User participation duration CDF (15500 total users).

(b) Distribution of participating BlackBerry devices.

Figure 2: Aggregate dataset statistics.

affected by a spyware application that was accidentally
installed on the device [5]. Unfortunately, collecting
a manifest of all applications present on the mobile de-
vice would be in violation of the user’s privacy. Instead,
during the analysis phase of our study, we checked for
statistical abnormalities, such as increased energy con-
sumption or abnormally long activity blocks. If an ab-
normality was found, the data was flagged for review,
manually inspected, and discarded if suspected to be
fraudulent.

2.2.4 Non-linear time
Time synchronization, a task often taken for granted,

is most problematic challenge to overcome in autonomous
logging. A device’s clock can be updated through three
means. The clock can be changed by plugging a device
into a personal computer and synchronizing with a ‘de-
vice manager’ [9]. Users can manually change the time
or time zone at any time. A device may also synchro-
nize its clock with the timestamp broadcasted by the
cellular network. Changes to the device clock manifest
as the appearance of non-linear time. Unfortunately,

there is no way to programmatically detect changes to
the device clock. We mitigate errors introduced by time
changes by detecting when the device is connected to a
computer and analyze these events separately from non-
connected events. In a large scale study, users can also
traverse many different time zones. UTC time should
be used to provide the absolute time of an event. Ex-
periments must also record the device’s time zone and
when a time zone change takes place.

2.3 Aggregate summary
Over six months of data collection, we constructed a

dataset that consists of 695 years of cumulative inter-
action and energy consumption behaviour from a total
of 15500 smartphone users. Approximately 15 years of
suspicious data from 213 users (a significant quantity of
data in its own right) was discarded due to the reasons
previously discussed. The CDF of users’ participation
duration illustrated in Figure 2(a). Our participants
span 23 timezones and diverse range of device capabil-
ities: all BlackBerry device types released since early
2006 [6]. These devices cross a wide range of hardware
characteristics and similar devices be be found from
other manufactures. The proportion of logs collected
for each BlackBerry device type is illustrated in Fig-
ure 2(b). To the best of our knowledge, our dataset
is several orders of magnitude larger than any previous
work.

3. SUCCESSFUL EXECUTION PREDICTION
Using energy consumption traces stored without our

dataset, this section examines how knowledge about
user charging characteristics can improve the design and
implementation of energy intensive applications. We
begin with an overview of the Energy Emulation Toolkit
(EET) followed by an evaluation using a simple sample
application.

3.1 Energy Emulation Toolkit
The EET is designed to predict the successful exe-

cution rate of energy intensive applications given an
energy consumption requirement and a specified dura-
tion of execution. An application is considered to have
‘successfully executed’ if it is able to run to completion
without draining a device’s battery.

The EET operates by iterating over all smartphone
users in a target population of either all users, users
with a specific device type, or users within a specific
user type (we will examine the characteristics of each
user type in the next section). For each user, the EET
assembles their energy traces as a linear timeline and
begins stepping through in five minute intervals. Through
each step of the timeline, the EET initiates a test to de-
termine if an application invoked at the current time,
t, with the specified requirements would succeed. A
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(a) Six hour execution duration.

(b) Twelve hour execution duration.

Figure 3: Successful execution rate by user type.

value of 1 or 0 is recorded for the 30 minute bucket
corresponding to t’s position in the week to represent a
successful or failed execution. The successful execution
rate of an application can therefore be provided as a
function of the starting time or as an aggregate mean
rate.

3.1.1 Implementation
We implement the EET as a stand-alone PERL mod-

ule that can be imported into any existing PERL pro-
gram/script. The EET module is initialized with the
root directory of the dataset and invoked using a sin-
gle function call that accepts the energy consumption
requirements, the duration of execution, and a value
that indicates the target population. Because the EET
scans energy trace files linearly it accumulates little
state during execution; the EET’s runtime footprint
when traversing the entire dataset is approximately 46
MB.

3.2 Evaluation
The EET can be applied to both simple applications

and complex. Table 1 provides examples of simple ap-
plications and their mean successful execution rate.

We demonstrate the use of the EET through a more
complex sample application that consists of a thread
that scans for neighbouring Bluetooth devices every one
minute. On every second scan, the application connects
to a server on the Internet over WiFi and uploads 100
KB of memory-resident data. Once per hour the ap-
plication reads a 100 MB file from Flash memory and
uploads the contents to the server. It then downloads
100 MB of data from the server and subsequently writes
the data to Flash memory. We implement the simple
application, run it across a testbed of 55 devices, and
measure the energy consumed. Assuming that the en-
ergy consumed by the hourly network and Flash mem-
ory I/O is amortized over the full hour and found that
the average consumption rate is 569 mW. We illustrate
the successful execution rate for the sample application
over a six hour and twelve hour duration for each user
type in Figure 3(a) and Figure 3(b) respectively. We
will not analyze these sample figures because the re-
sults for each user type will be obvious to the reader
after reading Section 4.3.

4. ENERGY PREDICTION
The EET can provide developers useful insight into

the expected behaviour of the application when deployed
across real devices. Using the EET, developers can al-
ter their design or tune paramters to reduce energy con-
sumption and increase the successfullness of the appli-
cation. Unfortunately, the EET cannot benefit appli-
cations whose energy consumption rate is not known a
priori. We address this problem using the EMO library.

We begin our design of the EMO by first describing
the following high-level energy characteristics. We then
describe our user classification method, user types, and
present an analysis of our user classification based en-
ergy level predictor. We conclude this section with an
analysis of the EMO library.

4.1 Energy characteristics
Charge/discharge durations: The charge and dis-

charge durations are the quantities of time that a device
is plugged into or unplugged from an external power
source. This property has a direct impact on the de-
vice’s battery life. Devices that charge for a longer

Application Duration Rate
GSM phone call (900 mW) 1 hour 95.2%
Video playback (1.1 W) 2 hour 84.3%
Bluetooth Class 2 (idle) (2.5 mW) 24 hours 100%
Bluetooth scan (1 min. period) (75 mW) 24 hours 100%

Table 1: Sample successful execution rates.
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Figure 4: CDF of participants’ mean
charge/discharge duration.

durations could have a higher expected battery level
than those that do not. Similarly, devices that discharge
for long durations could have a lower expected battery
level.

Charge initiation time/level: The charge initia-
tion time is the time of the day when the user begins
to charge their device. Regularlity in charge initiation
time could infer when energy is likely to be replenished.
A relationship between charge initiation and battery
level could also be used to predict battery level.

Battery level: Patterns in battery level over the
course of a day or week could be an ideal parameter for
predicting future battery life.

Charge/discharge rates: The charge and discharge
rates are the percentage of total battery capacity that
is replenished or depleted for every hour that a device
is charging or discharging. We did observe a significant
correlation between the discharge rate and the device
type and time of the day. This result is not surprising
considering the energy consumption disparity between
a device sitting idle at night and a device that is used
frequently throughout the day.

Other characteristics: Although our dataset con-
tains a rich body of smartphone interaction data, we
found that there was little correlation between energy
consumption and user interaction. We plan to explore
user interaction characteristics in future work.

4.2 Classification method
Our user classification method is an iterative process

to determine the subset of high-level energy character-
istics that best differentiate users. Our metric to deter-
mine the utility of a characteristic selection is the mean
prediction error derived by clustering users on the se-
lected parameters. Given that the choice of prediction
algorithm is dependent on the choice of input parame-
ters, a circular dependency exists. We therefore begin

Algorithm 1 Predict(tcurr, bcurr, tlast, tpred, γ)
Require: tlast ≤ tcurr, tcurr < tpredict

bpred ← bcurr

while tcurr < tpredict do
# Retrieve current cycle duration
if γ (CHARGING) then
tduration ← δcharge( bucket( tlast))

else if 6 γ (DISCHARGING) then
tduration ← δdischarge( bucket( tlast))

end if
if tlast < tcurr then

# Algorithm invoked mid-cycle
tduration ← tduration − (tcurr − tlast)

end if
for bucket β ∈ tduration do

# Increment/decrement predicted battery level
if γ (CHARGING) then
bpred ← min(100, bpred + ρcharge(β) ∗ |β|)

else if 6 γ (DISCHARGING) then
bpred ← max(0, bpred − ρdischarge(β) ∗ |β|)

end if
end for
# Advance time by duration of cycle
tcurr ← tcurr + tduration

# The end of a cycle is the beginning of another
tlast ← tcurr

# Alternate the charging state
γ ←6 γ

end while
return bpred

our process by defining a fixed prediction algorithm.

4.2.1 Prediction algorithm
The design of our prediction algorithm was shaped by

one high-level goal: to provide predictions over long du-
rations that can easily traverse multiple charge/discharge
cycles. The prediction algorithm must therefore adapt
to three dominant trends identified during an aggregate
analysis of our dataset. First, the charge/discharge du-
rations vary widely among users. The CDF for each
mean duration is illustrate in Figure 4. These durations
are also time-varying throughout the week. Second,
mean discharge rate varies significantly over the course
of day: a device sitting idle at night consumes energy
at a lower rate than a device that is active throughout
the day. Moreover, there is a large disparity between
the mean charge rate (46.8%/hour) and the mean dis-
charge rate (4.2%/hour).

Our prediction algorithm is specified formally in Al-
gorithm 1. We sub-divide each week into 336 discrete
30 minute buckets and initialize the algorithm with four
vector parameters: δcharge, δdischarge, ρcharge and ρdischarge.
The δ vector contain the mean charge/discharge dura-
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(a) CDF of charge duration.

(b) CDF of discharge duration.

(c) PDF of charge initiation time.

Figure 5: Statistics by user type.

tions for cycles initiated during a specific bucket. If δ
is undefined in a given bucket, then the algorithm uses
the mean value of the target population. The ρ vec-
tor contains the mean charge/discharge rate for each
bucket. Again, if a value within ρ is undefined then
the mean charge/discharge rate over the target popula-
tion is used. Each invocation of the algorithm requires

(a) Discharge rate over the week.

(b) Mean battery level over the week.

(c) CDF of battery level when initiating a charge.

Figure 6: Statistics by user type.

the following parameters: the current charge/discharge
state (γ), the time that the current charge/discharge
cycle (tlast) began, the current time (tcurr), the current
battery level (bcurr), and the desired prediction time
(tpred). Using the time that the current charge/discharge
cycle began, the algorithm examines δ to determine the
expected durations of the cycle and the time that the

7



next cycle will begin. While stepping through each cy-
cle, our algorithm increments (charge) or decrements
(discharge) the predicted battery level (bpred) at the
rate specified in ρ.

4.2.2 Clustering strategy
With a fixed prediction algorithm, we now evaluate

the prediction accuracy derived by different user classi-
fications. This iterative process involves selecting a sub-
set of energy characteristic, clustering users, and apply-
ing the prediction algorithm to each cluster. At the end
of each iteration, we evaluate the gain/loss in prediction
accuracy and select a new subset of characteristics.

Clustering was performed using the k-means algo-
rithm with the mean euclidean distance between vari-
ables as our distance metric. In each iteration, we sub-
iterate through the values k = [2, 6] clusters. The pre-
diction algorithm is applied to each user clustering for
tpred = {1, 2, 6, 12, 18, 24} hours using three-way cross
validation. We calculate prediction error by iterating
through each user’s energy trace file in five minute steps
and apply the algorithm using the file’s current state.
The prediction error for each prediction is taken as the
absolute difference between the predicted battery level
and the true battery level in the underlying dataset.
The mean prediction error over all trials and users is
averaged over each cross validation stage to produce
the mean prediction error for a given subset of charac-
teristics and cluster count (k).

At the end of this (long) iterative process, we found
that clustering users by their mean weekday and week-
end charge/discharge durations yielded the highest pre-
diction accuracy. Prediction accuracy converged at three
clusters.

4.3 User classification
Before a formal evaluation of the predictor, we briefly

describe each user type and their differentiating char-
acteristics.

Opportunistic chargers: Opportunistic chargers
are the most common type of smartphone user and
represent approximately 63% of the population. These
users are primarily characterized by frequent, short charge
durations during the hours of 8am to 5pm. The CDF
of charge duration for opportunistic chargers, identified
as ‘Cluster 0’, is illustrated in Figure 5(a). Of the three
user types, these users are the most aggressive energy
consumers, consuming nearly 4.8% of their device’s en-
ergy per hour. The discharge rates for each user type
throughout the week are illustrated in Figure 6(a).

Light consumers: Light consumers have the low-
est energy discharge rate among all three user types.
These users represent approximately 20% of the pop-
ulation and are identified as ‘Cluster 1’ in each fig-
ure. These users charge for longer durations than op-

portunistic chargers, but discharge their devices over a
longer duration. The CDF of discharge duration is il-
lustrated in Figure 5(b). Despite having the lowest dis-
charge rate, light consumers surprisingly maintain the
lowest mean battery level of 56.0% as illustrated in Fig-
ure 6(b). These users also allow their battery to drop to
its lowest level before initiating a charge. On average,
a light consumer initiates a charge when their battery
level has dropped to 34%. The CDF of battery level
when a charge is initiated is illustrated in Figure 6(c).

Night-time chargers: Our final class of users are
the night-time chargers. These users represent 17% of
the population and are identified as ‘Cluster 2’ in each
figure. The charging behaviour of the user is best il-
lustrate in Figure 5(c) as the PDF of the time that
users initiate a charge. The daily spike between the
hours of 10pm to 11pm illustrate that these users ini-
tiate a charge (probably) before going to bed. Given
that these users charge predominantly during the night,
their mean charge duration is significantly higher than
the other two groups, as illustrated in Figure 5(a). Al-
though night-time chargers consume only 0.5% more of
their battery per hour than light consumers, their long
charging durations serve to maintain an mean battery
level of 72.5%. Similarly, night-time chargers initiate a
charge at an average battery level of 56%.

4.3.1 Device independence
We briefly address the impact of device hardware on

our two clustering parameters: charge and discharge
duration. Using a t-test, we found that there was no
significant different between device types at a 99% CI.
These results are illustrated in Figure 7(a). With the
exception of the 8700, nearly every 99% CI contains
the each cluster’s population mean. We observe sim-
ilarly results in the discharge case, as illustrated in
Figure 7(b). Although there is more variation among
the CIs for each device, we observe that nearly ever
CI contains the cluster’s population mean. The user’s
charge/discharge characteristics are clearly independent
of the device type used.

4.4 Predictor analysis
We evaluate the accuracy of user classification-based

prediction (Clustered Predictor) by comparing it to pre-
dictions based on the entire participant population (Sim-
ple Predictor), device type (Device Predictor), and pre-
dictions made on an individual basis (Individual Pre-
dictor). With a fixed prediction algorithm, alternating
between predictors is performed by initializing the al-
gorithm with the δ and ρ statistics of the training pop-
ulation. Although there are an innumerable number of
possible predictors, we believe that this set successfully
demonstrates the benefit of a user classification-based
prediction scheme.
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(a) Charge duration for each cluster and device type.

(b) Discharge duration for each cluster and device type.

Figure 7: Durations by user and device type.

We evaluate each prediction algorithm through three-
way cross validation of our dataset. For the Simple
Predictor, we divide the dataset into three equal sized
random subsets. We train each predictor on two thirds
of the population, the training set, and apply the pre-
dictor to the remaining third of the dataset, the target
set. Applying the predictor on a participant’s traces
requires that we iterate through all energy trace files
in five minute steps. At each step through the trace
log, we apply each predictor, store the future predicted
battery level, and compare the current true value with
a previous prediction. We store the absolute error for
each prediction for the current bucket. This process is
repeated for two remaining portions of the dataset. Af-
ter applying the predictor to each third of the dataset,
we compute the mean absolute error for each bucket in
the week.

We evaluate the Clustered Predictor by dividing the
training set and target set into two sets of three clus-
ters. Given that clusters are unordered sets, we order
the clusters to ensure a maximal overlap with the user
types previously described. For each of the three user

(a) One hour absolute prediction error.

(b) Mean absolute one day prediction error.

Figure 8: Mean absolute prediction error.

types, we train the predictor on the cluster in the train-
ing set and apply it to the corresponding cluster in the
target set. As before, the absolute error for each battery
level prediction is stored in a bucket as previously dis-
cussed, and the mean absolute error can be computed
over the course of the week. Figures 8(a) and 8(b) il-
lustrate the mean absolute prediction error for one and
24 hour predictions for each of the four prediction algo-
rithms. These figures illustrate several important find-
ings. Predictions based on global statistics performs
the worst. This is not surprising given that we have
shown that users differ. As previously illustrated, there
is more variability in the cluster parameters between
user types than between user of the same device type.
It is therefore not surprising that the Device Predictor
also performs poorly. The relationship between the In-
dividual and Clustered Predictors is surprising. Over
short durations, predictions made on an individual ba-
sis are significantly more accurate than user type pre-
dictions. Conversely, over long durations the Clustered
Predictor significantly out performs individual predic-
tions. At predictions of approximately 12 hours, the

9



Figure 9: Accumulation of error.

Figure 10: Mean absolute prediction error.

predictors yield equivalent results.
Over long durations, the Clustered Predictor outper-

forms the Individual Predictor due to a reduced error
accumulation rate. In the individual case, the δ vector
is calculated over few samples and has a correspond-
ingly high standard deviation. In the clustered case, δ
is calculated as the mean of the δ of each constituent
user (a mean of a mean). Thus an closer approxima-
tion of the population mean, with a reduced standard
deviation window, and lower propensity to accumulate
error. We illustrate this explanation in Figure 9. The
peaks in mean error in the evenings of each graph are
attributed to the order of magnitude disparity between
the charge and discharge rates. Recall from Figure 5(c)
that all three user types tend to charge their device at
night. Our algorithm operates by estimating the dura-
tion of a charge/discharge cycle. An incorrect estima-
tion of either duration results in a rapid gap between
the predicted and true battery level.

Drawing from these observations, we introduce a fifth
predictor, the Hybrid Predictor, that combines the short-

term accuracy of the Individual Predictor with the long-
term accuracy of the Clustered Predictor. The Hybrid
Predictor is initialized with both an individual user’s
energy characteristics, the characteristics of all three
user types, and the centroid coordinate of each user
type’s cluster. For predictions of less than 6 hours, the
Hybrid Predictor yields the same results as the Individ-
ual Predictor. For predictions over six hours, the Hy-
brid Predictor examines the individual user’s δ values
and selects the user’s type based on the closest cluster
centroid. The predictor then exploits the statistics un-
derlying the user type to provide predictions as if they
were from the Clustered Predictor. In practice, both
the energy characteristics of the three user types and
their centroid coordinates would be hard coded into
the predictor; allowing the code to be embedded into
an energy-intensive application to actively predict the
device’s future energy level. We illustrate the mean pre-
diction error up to 24 hours in advance from of all five
predictors in Figure 10.

4.5 Energy Management Oracle
Using the Hybrid Predictor, and the ability to predict

the future battery level, we now present the design and
analysis of the EMO library. The EMO is designed to
provide energy-aware hints to applications at runtime.
Using the library, applications query the EMO prior
to initiating an energy intensive operation. Upon each
query, the EMO decrements the current battery level
by the energy consumed by the operation and initiates
a 24 hour battery level prediction. The EMO query
returns ‘true’ if the application can safely execute the
operation, or ‘false’ if the operation will result in the
depletion of the battery.

4.5.1 Implementation
Our implementation of the EMO modifies the Hybrid

Predictor slightly by halting the prediction if the pre-
dicted battery level drops to zero. Like the EET, the
EMO is implemented as a stand-alone PERL module
that can be imported into any PERL program/script.
PERL is supported on a wide range of mobile devices.
For devices, such as the BlackBerry and iPhone, that
do not support PERL, the algorithms underlying the
EMO could be implemented in Java or Objective C in
two or three days.

4.5.2 Evaluation
We evaluate the EMO through simulation of the sam-

ple application described in Section 3.2. Recall that the
application has two energy intensive operations: up-
loading 100 MB and downloading 100 MB to file. We
will refer to these jointly as the optional operation, which
consumes approximately 1727 Joules of energy when
executed. If the optional operation is performed, the
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(a) Six hour execution duration using EMO.

(b) Twelve hour execution duration using EMO.

Figure 11: Evaluation of EMO.

application will consume energy at a standard rate of
approximately 322 J/hour by scanning neighbouring de-
vices and uploading memory resident data.

Our simulation engine consists of a modified version
of the EET that decrements the battery level at the
standard rate over a specified execution duration. Like
the EET, the simulator steps through each energy trace
file in five minute steps. In each step, it initiates a sim-
ulated execution of the application. During each simu-
lated hour, the application queries the EMO to decide if
it should perform the optional operation. The simulator
will decrement the battery level by 1727 Joules if and
only if the EMO returns ‘true’. Like the EET, the simu-
lator records a success or failure for each bucket, which
allows us to compute the successful execution rate as a
function of the starting time of the application.

We compare the result of the simulation with two
additional scenarios that demonstrate the upper and
lower bounds on the execution success rate. The first,
optimal, scenario utilizes an Oracle with perfect future
knowledge; this oracle scans ahead in the trace file and
returns ‘true’ if and only if the application will succeed.

The lower bound is determined by running the EET as
normal, where the simulated application executes with-
out the benefit of battery prediction and the EMO. Fig-
ure 11(a) and Figure 11(b) illustrates the aggregate suc-
cessful execution rate of the sample application over a
six and twelve hour period respectively. Over six hours,
the EMO is able to increase the successful execution
rate from 76.7% to 87.6%; a 46.5% reduction in fail-
ures. Over long durations, the gain is more substantial.
Without the EMO, the application exhibits a success-
ful execution rate of only 43.8%. Applying the EMO
increases this rate to 84.6%, which amounts to a 93.1%
improvement! We therefore believe that the EMO can
add significant value to energy intensive applications.

5. CONCLUSION
This paper has detailed the design and deployment of

a large-scale smartphone user study that examines how
users interact with and consume energy on their per-
sonal mobile devices. Our dataset contains over 695 years
of cumulative data for 15500 users from around the
globe. Although this work focuses exclusively on en-
ergy consumption, we believe that it contains a wealth
of knowledge outside this context; spanning areas such
as interaction design, battery provisioning, and non-
technical domains such as addictology, polysomnogra-
phy, and psychology.

As the scale and complexity of mobile applications
continue to increase, we strongly believe that energy
consumption will become a new dimension in mobile
software evaluation. Applications that consume large
amounts of energy over long durations will be practical
for only a subset of the user population with compat-
ible energy characteristics. We predict that in the fu-
ture, software will be distributed with a specified energy
demand in the same way that resources such as CPU
speed, memory/disk capacity, and network bandwidth
requirements are specified in today’s software. The En-
ergy Emulation Toolkit is perfectly positioned to sup-
port this trend by providing developers the tools to eval-
uate the successfulness of their applications across all
users, specific device hardware, and specific user types.

Smartphone users, like all complex objects, can be
classified by an innumerable number of variables. Our
work differentiates users on the basis of their daily bat-
tery charge and discharge characteristics, and has iden-
tified three user-types: opportunistic chargers, light con-
sumers, and night-time chargers. This classification
scheme provides 72% accuracy on predictions between
12 to 24 hours in advance. Using our predictor we build
the Energy Management Oracle library, which can be
queried by applications prior to the execution of an en-
ergy intensive operation. Using the oracle, we demon-
strate that applications can achieve a near optional suc-
cessful execution rate. Using our dataset, we expect
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that other researchers will discover more efficient en-
ergy prediction techniques and that user-differentiation
will continue to yield similar improvements in predic-
tion accuracy.
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