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ABSTRACT
Constrained computing environments, such as smartphones
and embedded wireless devices, are becoming increasingly
prevalent. Driven by the need to minimize power usage,
these devices are characterized by their low-power CPUs,
limited memory, slow yet vast amounts of persistent storage,
and one or more wireless network interfaces. As the domi-
nant form of future computing, understanding and adapting
to the trade offs that exist between computing and com-
munication resources and energy consumption will become
increasingly important.

In this paper we consider the effect of a constrained com-
puting environment on opportunistic communication. Draw-
ing from our experiences with two existing mobile systems,
we detail the constraints that inhibit opportunistic commu-
nication. We also show how these constraints can be satisfied
using a set of design principles for systems that depend on
opportunistic communication.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication; D.1.0 [General]

General Terms
Design, Performance

Keywords
Opportunistic communication, constrained computing
environment, design principles, mobile, KioskNet, MobiClique

1. INTRODUCTION
Resource constrained devices, such as smartphones and

embedded wireless devices, are becoming increasingly preva-
lent. In 2007, smartphone sales rose 60% to nearly 115 mil-
lion devices1. By 2010, sales are expected to surpass those

1http://tinyurl.com/4l3f3z
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of laptops2. Driven by decreasing hardware costs, small,
embedded computers are increasingly found in vehicles, sen-
sor networks, and other elements of daily life. As comput-
ing platforms, these devices are characterized both by their
mode of operation and physical attributes. They operate in
autonomous environments or as personal devices where min-
imizing heat and/or maximizing battery life is a key concern.
To conserve energy these devices utilize low-power CPU(s),
which are often underclocked to reduce heat. They typically
contain a limited amount of RAM; roughly an order of mag-
nitude less than an average personal computer. Persistent
storage is provided by low-power, high-latency hard drives or
solid state Flash memory. Short range wireless technologies
such as WiFi and Bluetooth have also become standard. As
the dominant form of future computing [9], understanding
and adapting to the trade offs that exist between computing
and communication resources and energy consumption will
become increasingly important.

Although today’s cellular networks provide nearly ubiq-
uitous data service, devices are increasingly utilizing inter-
mittent, short-lived, wireless opportunistic connections to
exchange data with fixed infrastructure and other mobile
devices. However, the capacity, or throughput, of these con-
nections is handicapped by the constrained computing envi-
ronments where they take place. In this paper we consider
the effect of a constrained computing environment on oppor-
tunistic communication. Moreover, we argue that the con-
ventional system model, where applications operate obliv-
ious to their connectivity state, is inefficient in an oppor-
tunistic communication setting. Based on our experiences,
we propose a set of design principles for systems that utilize
opportunistic communication.

We derive our design principles from our experience with
two real-world systems. The first system, KioskNet, uses
opportunistic connections between a kiosk-based computer
and an embedded device in a vehicle to transport data to and
from kiosks in rural areas of developing regions to gateways
on the Internet [3].The second system, MobiClique, exploits
human mobility to provide decentralized store-and-forward
communication between mobile devices [14, 6]. Although
these systems solve different problems and cater to very dif-
ferent types of users, we believe that they encapsulate the
problems that other systems would face in that their effec-
tiveness is directly dependent on their ability to maximize
communication during opportunistic connections.

This paper begins with a brief overview of KioskNet and
MobiClique in Section 2. In Section 3 we define our system

2http://tinyurl.com/2dsnmn



Figure 1: Example scenario: Mobile devices operating in a pocket-switched network.

model and outline the set of system constraints that ad-
versely affect opportunistic communication. Based on our
experiences, we define a set of design principles for oppor-
tunistic communication in Section 4. We conclude in Sec-
tion 5.

2. OVERVIEW OF EXISTING SYSTEMS
We first give a brief overview of two existing systems that

take advantage of opportunistic wireless communications to
exchange data amongst wireless-enabled devices.

2.1 KioskNet
KioskNet is a mobile system that provides very low-cost

Internet to developing regions [3]. Building on the pioneer-
ing lead of Daknet [11], KioskNet utilizes buses and cars as
“mechanical backhaul” devices to carry data between rural
village kiosks and Internet gateways. A village kiosk con-
sists of a kiosk controller, a low-cost, low-power embedded
computer that can be powered from an independent power
source such as a solar panel. Villagers access the kiosk using
a recycled PC connected to the controller. Data created by
users, such as emails, information requests, videos, etc., is
fragmented and stored on the controller as self identifying
bundles3. A controller is assumed to have WiFi, and pos-
sibly a cellular or dial-up connection. Although controllers
can communicate with the Internet using a variety of con-
nectivity options, mechanical backhaul is the primary mode
of communication. Mechanical backhaul is provided by cars,
buses, motorcycles, and trains that pass by a kiosk and also
an Internet gateway. Such entities are known as ferries.

During an opportunistic connection with a controller, which
may last from 20 seconds to 5 minutes, bundles are trans-
ferred from the controller to the ferry. Similarly, bundles
destined for a kiosk user is transferred from the ferry to
controller. To minimize redundant bundle transfers during
an opportunistic connection, each connection begins with a
metadata exchange where each component exchanges a list
of its existing bundles. Only bundles that have not present
on the other component are transferred. Each component
maintains a record of how many times each bundle was for-
warded, which ensures that precedence is given to bundles
that have been forwarded the fewest times.

3Terminology borrowed from the delay-tolerant networking
community (http://www.dtnrg.org).

Similarly, ferries upload and download bundles opportunis-
tically to and from an Internet gateway, which is a computer
that has a WiFi interface, storage, and an always-on connec-
tion to the Internet. The gateways are likely to be present
in cities having DSL or cable broadband Internet access. A
gateway collects bundles opportunistically from ferries and
stages them in local storage before uploading to a server on
the Internet. It also downloads bundles from the Internet on
behalf of kiosk users, and transfers them opportunistically
to the appropriate ferry, governed by a routing protocol [4].

2.2 MobiClique
As a form of pocket-switched network [6], MobiClique ex-

ploits natural human mobility and opportunistic wireless
connections to disseminate data from device to device across
an otherwise disconnected network [14]. Unlike KioskNet,
where data flows to and from rural kiosks and Internet gate-
way, each device running MobiClique is both a source and
destination for data content. The system depends on inter-
mediate devices to ferry data between source and destina-
tion. An example scenario is illustrated in Figure 1. De-
lay tolerant applications such as email pass data into Mo-
biClique as opaque objects. The data is subsequently frag-
mented into smaller bundles and stored in persistent storage
(a relational database). At the receiving device, bundles are
stored, reassembled, and passed to the receiver’s instance of
the application.

Devices running MobiClique operate by continuously scan-
ning for neighbouring devices through a combination of Blue-
tooth scans and beacons sent over WiFi. When another
MobiClique device is detected, an opportunistic connection
is established. During an opportunistic connection, each
device exchanges a set of identifying/authenticating infor-
mation and metadata about the user. In MobiClique, this
metadata consists of the user’s social profile: their friends
and their interests. Each device uses this metadata to query
a local relational database that returns a set of bundles that
should be forwarded to the neighbouring device. Referring
to our example figure, device A would have determined that
device B and C were friends or shared interests with device
D, and were thus likely to deliver data to D.

Like KioskNet, MobiClique’s ability to efficiently dissem-
inate content is dependent on its ability to maximize data
transfer during an opportunistic connection.



3. COMPUTING ENVIRONMENT
With an overview of two existing systems as context, we

now present a more detailed system description and consider
the constraints that inhibit opportunistic communication.

3.1 System Model
Opportunistic communication is typically provided at the

OSI network session layer. Applications access this layer
through a conventional set of APIs for sending and receiv-
ing data. Data received from applications is fragmented into
bundles. These bundles are then stored in persistent stor-
age to provide robustness to power failure during periods of
long disconnection. Bundles received by other devices are
also stored in persistent storage. When all of the bundles
composing a data item are received, the data is passed to
the application layer.

Associated with each bundle is a set of metadata. Meta-
data is application dependent; however, it typically consists
of the source and destination of the bundle, a creation times-
tamp that is used to expire bundles, a globally unique iden-
tifier, and value identifying its structure or purpose.

We make three fundamental assumptions regarding the
data and metadata handled by this layer.

• Metadata fits in memory: Although pathological
metadata schemes can be defined that consume vast
amounts of memory, we assume that metadata can al-
ways fit into main memory. This assumption is easy
to satisfy even in low memory environments; because
by doubling the size of a data bundle, we can usually
reduce the total metadata size by half. Metadata per
bundle is about 100 bytes at most.

• Application data bundles cannot fit in memory:
For these systems to scale to a large number of users,
they must accommodate large amounts of data for a
wide range of users. For example, two hours of music
recorded at 192 kbps (typical) occupies about 170 MB.
Twenty minute videos can grow from 20 MB to several
hundred MBs. We therefore assume that the amount
of data contained on any device for the purpose of
forwarding exceeds the amount of main memory and
must reside on persistent storage.

• Every opportunistic connection needs different

data: To disseminate large amounts of data, devices
cannot transfer the same bundles during each connec-
tion. For example in KioskNet, connections between
ferry and rural kiosk must exchange bundles that have
been forwarded the fewest number of times. In Mo-
biClique, the bundles exchanged during a connection
dependent on the identity and social relationship with
the neighbouring device. Each opportunistic connec-
tion must therefore identify the neighbouring device
and making a subsequent bundle selection decision.

The primary function of the opportunistic communication
layer is to establish and participate in opportunistic connec-
tions with other devices. These connections are generally
defined by the following four phases:

• Scanning phase: Each device continuously scans for
neighbouring contacts. The scanning interval may be
static or dynamic depending on the user’s previous mo-
bility and current context. Scanning may be performed

Figure 2: Phases of an opportunistic connection.

passively by listening for beacons or actively by prob-
ing for neighbours.

• Setup phase: Upon detecting and connecting to an
opportunistic contact, each device must first identify
the contact, and in some cases, authenticate and setup
a secure connection.

• Selection phase: After establishing a connection with
the neighbouring contact, each device must select a
subset of its local bundles to forward. In sparse net-
works, where opportunistic connections are infrequent,
this selection may be simple. For example, in KioskNet,
bundles travel either upstream to the Internet, or down-
stream to a rural kiosk. The selection phase therefore
only considers the class of contact (i.e. kiosk or gate-
way) and selects bundles in the order of least times
sent. In dense networks, where devices are in frequent
contact, more complex queries are necessary. The se-
lection phase in MobiClique selects forwarding bundles
based on their destination and social relationship with
the contact. To prevent redundant bundle transfers,
MobiClique maintains a record of each bundle success-
fully transferred to each device in persistent storage.
Experimentation has shown that the resulting selection
phase can quickly grow to the order of tens of seconds
because of the need to access persistent storage [14].

• Data phase: After selecting a set of bundles to be
forwarded, each device begins the forwarding process.
Ideally, this phase should occupy the largest portion
of the opportunistic connection. During this phase,
bundles are read from persistent storage, transmitted



to the neighbouring device, and stored persistently on
the receiver. At this time, the receiver either explicitly
or implicitly acknowledges (depending on the trans-
port protocol) the receipt of each data bundle. The
data phase terminates when both parties have finished
transmitting data or when the connection is discon-
nected (either intentionally or due to signal loss).

The four phases of an opportunistic connection are illus-
trated in Figure 2.

Scanning and setup phases have been extensively studied
in the literature [16, 5]. Scanning more aggressively reduces
the expected delay in detecting a nearby device, at a cost of
increased energy consumption. The trade off between scan-
ning periods and missed opportunities is detailed in [16].
Similarly, the setup phase offers little opportunity for im-
provement and has been studied in great detail [5]. In ex-
isting systems, contacts are identified by their MAC address
or an exchange of globally unique identifiers. Techniques for
authentication and setup of a secure channel range in com-
plexity; however, these are typically CPU-bound operations
with a constant running time.

We therefore focus, for the remainder of this paper, on
minimizing the duration of the selection phase, and max-
imizing the quantity of data transferred during the data
phase. Unfortunately, these phases are inhibited by a se-
ries of system constraints.

3.2 System Constraints
Opportunistic communication is inhibited by the following

constraints.

• Need to limit energy consumption: The need to
limit energy consumption is a constraint that funda-
mentally defines constrained computing environments.
On mobile platforms, conserving battery life requires
low-power and sometimes underclocked CPUs, wire-
less technologies that cannot operate at full data rates
and frequently enter power saving modes [1], and low-
power, high-latency forms of persistent storage. These
hardware requirements also exist in embedded environ-
ments that depend on passive cooling and must mini-
mize heat.

This constraint also affects decisions made when imple-
menting an opportunistic communication system. As
mentioned above, the chosen scanning frequency has
a direct effect on battery life. Excessive computation
causes the CPU to be active when it may otherwise
be off. Finally, the choice of wireless interface(s) can
significantly affect power consumption [12, 13].

• Underpowered CPU: As discussed, mobile devices
are commonly designed with an underpowered and un-
derclocked CPU to save energy and reduce heat. Other
devices, such as Apple’s iPhone [8], contain ample CPU
power; however, the CPUs are disabled or placed in a
low-power mode when the user is not interacting with
the device. Underpowered CPUs manifest themselves
in three phases of an opportunistic connection. (1)
For systems that must authenticate contacts or estab-
lish a secure connection, an underpowered CPU in-
creases the duration of the setup phase. (2) In the
selection phase, each device must execute a forward-
ing algorithm to select a subset of bundles to forward.

In KioskNet and MobiClique, this selection is compu-
tationally simple; however, other forwarding schemes
have been proposed that demand significant computa-
tion [17]. (3) Finally, in both the selection and data
phases, underpowered CPUs have been shown to be
the primary bottleneck when performing wireless net-
work I/O, and significantly reduces throughput dur-
ing an opportunistic connection [10]. Measurements
in KioskNet show that an underpowered CPU can re-
duce the maximum throughput of a 54 Mbps capable
WiFi card to 12 Mbps or less.

• Poor and intermittent communication: The mo-
bility of devices operating in an opportunistic setting
introduces inherent communication problems. Devices
may be detected on the fringes of communication range,
which causes subsequent communication to be unreli-
able and problematic; particularly for control packets
that initiate the connection [5, 18].

Moreover, devices that are in communication range
will eventually move out of range. Depending on the
wireless technology used, communication interrupts may
cause random backoffs, inordinately long delays, and
failures that can hinder other connection opportuni-
ties. Devices need to somehow determine that the com-
munication opportunity has ended, and cleanly close
open descriptors. Moreover, they need to deal with
cases where the opportunistic connection resumes af-
ter a brief pause.

• Slow persistent storage: Low-power persistent stor-
age takes two forms: disk drives that operate with a
low disk RPM and spin down when not used, and Flash
memory. Slow persistent storage affects both the selec-
tion and data phases. Slow (random) I/O causes the
retrieval of metadata to take order of magnitude longer
than if the metadata was in memory. Slow I/O also
serves to reduce the overall throughput of a connection.
We have found that reading and writing to slow persis-
tent storage (hard disk and Flash memory) during an
opportunistic connection reduces wireless throughput
by approximately a factor of two [10].

• Limited RAM: Despite the continuous decrease in
memory costs, RAM continues to be a highly con-
strained resource on mobile devices. Constraints due
to limited RAM manifest themselves in two forms and
inhibit both the selection and data phases. First, lack
of RAM prevents applications from storing application
data in memory and thus requires accessing persistent
storage during an opportunistic connection. Second,
querying, reading, and transmitting data during an
opportunistic connection typically results in a rapid
series of memory allocation requests that often con-
sume all of the available memory and cause virtual
memory swaps to slow persistent storage. Subsequent
allocation requests during the opportunistic connec-
tion must block waiting for the virtual memory swap
to finish.

The problems stemming from limited memory are mag-
nified by virtual machines such as Java and .NET,
which are becoming increasingly common on mobile
devices. Both Java and .NET rely on garbage collec-
tion to reclaim memory. Garbage collection is known



Constraint Design principle

Need to limit energy consumption Minimize redundant wireless data transfer
Underpowered CPU Explicitly distinguish between periods of connection and disconnection

Poor and intermittent communication Use hysteresis
Slow persistent storage Cache metadata

Limited RAM Maximize the use of available memory and adapt to low memory conditions

Table 1: Design principle satisfying each system constraint.

to be computationally expensive [19]. Although garbage
collection can be performed eagerly during periods of
inactivity, it is typically performed lazily and reclaimed
on demand. Performing garbage collection during an
opportunistic connection can significantly reduce through-
put.

4. DESIGN PRINCIPLES
With an understanding of the parameters that inhibit op-

portunistic communication, we now present a set of design
principles. The relationship between system constraints and
design principles is summarized in Table 1.

• Cache metadata

Storing metadata in main memory rather than persis-
tent storage provides a quick remedy to the effect of
slow persistent I/O. Measurements in KioskNet show
that even an in-memory näıve metadata implementa-
tion can reduce the duration of the selection phase by
approximately a factor of five. Unfortunately, while
we assume that metadata can always fit in memory, we
cannot guarantee that memory will not be consumed
by other applications or persist after a device reset.
Applications should therefore treat in-memory meta-
data as a cache that provides hints during the selection
phase [15]. An invalid hint may have the side effect of
forwarding redundant data; however, successful hints
will significantly increase performance by avoiding per-
sistent I/O.

• Maximize the use of available memory and adapt

to low memory conditions

This principle follows naturally from the need to cache
and minimize interaction with slow persistent stor-
age during an opportunistic connection. The abil-
ity to sample the level of available memory exists in
nearly all smartphone and embedded OSes. Appli-
cations should proactively populate their in-memory
cache when memory is unused.

While opportunistic communication systems should con-
sume as much main memory as available, they must be
equally ready to release it back to the underlying oper-
ating system. In virtual memory environments, failure
to release memory back to the OS will eventually re-
sult in frequent page swaps. In environments without
virtual memory, memory allocations will either fail or
emergency garbage collection will take place4. We have

4The default behaviour in most Java VMs is to wait un-
til free memory drops below a predefined threshold before
triggering garbage collection.

found that low memory problems frequently occur dur-
ing opportunistic connections when large amounts of
memory are requested.

On recent smartphone platforms, including BlackBerry [7]
and Windows Mobile [2], applications can register for
low memory events from underlying OS and proac-
tively release memory. While every non-trivial appli-
cation should utilize these OS functions, their use is
critical in an opportunistic communication setting.

• Minimize redundant wireless data transfer

The most effective means of minimizing redundant data
transfer is to avoid retransmitting bundles. Although
this principle may seem obvious, its design and im-
plementation is non-trivial and must be considered in
the early stages of software design. In KioskNet, re-
dundant data transfer is reduced through the use of
a metadata exchange. Each connected component ex-
changes a list of bundle IDs identifying the bundles
that it contains. Each component then requests only
bundles that it does not have. In our current imple-
mentation, this exchange causes the selection phase to
last approximately 30 seconds for a 100 MB workload
and nearly zero bundles are redundantly transferred.
MobiClique also minimizes redundant transfers with-
out a metadata exchange; the selection phase consists
purely of a complex database query and no network
I/O. Each MobiClique device maintains a record of
which bundles have been successfully delivered to each
device; only unsent bundles are forwarded. This oper-
ation requires a four-way database join and can take
over 30 seconds to select less than 5 MB worth of bun-
dles. Clearly, the design of this optimization can have
a significant impact on the performance of the system.

• Explicitly distinguish between periods of

connection and disconnection

Exploiting periods of disconnection is an unexplored
topic in opportunistic communication. We strongly
believe that exploiting this fundamental property can
yield substantial performance gains. Although none
of our systems exploit this property to its full poten-
tial, we foresee using disconnection periods to (1) re-
fresh the metadata cache, (2) compress/decompress
data bundles, (3) pre-compute forwarding strategies,
and (4) performing explicit garbage collection.

• Use hysteresis

Poor and intermittent communication can cause con-
nections to frequently come and go. Reacting to lost
and re-established connections requires each device to



enter the setup and selection phases before it can re-
sume sending data. A system that uses opportunistic
communication should not immediately react to the
loss of a connection; the connection may resume af-
ter a short delay. When a connection is thought to
be lost, we have found that waiting 10 to 20 seconds
before declaring it closed works well.

5. CONCLUSION
Drawing from our experiences with two existing systems,

KioskNet and MobiClique, we have discussed how the dom-
inant form of future computing both supports and inhibits
opportunistic communication. By examining each constraint
in a mobile device and its effect on opportunistic communi-
cation, we have enumerated a set of design principles. Al-
though these principles may seem like common sense, they
are not obvious when initially designing a system. We have
learned them only by examining the flaws in our own work
and have re-implemented parts of both systems to correct
these problems.

In summary, we believe that developing applications in
a resource constrained environment requires careful consid-
eration of how and when memory is used and storage is
accessed, when a connection should be made and eventually
closed, and most importantly, how energy consumption can
be minimized; developing in these environments requires a
sense of minimalism. These issues rarely concern develop-
ers in a PC or server development environment and merit
further study.
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