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The use of smartphones is growing at an unprecedented rate and is projected to soon pass
laptops as consumers’ mobile platform of choice. The proliferation of these devices has
created new opportunities for mobile researchers; however, when faced with hundreds of
devices across nearly a dozen development platforms, selecting the ideal platform is often
met with unanswered questions. In this paper I consider desirable characteristics of mobile
platforms necessary for mobile networks research. Based on these characteristics, I assess
five smartphone platforms: Android (Linux), BlackBerry, iPhone (Mac OS X), Symbian,
and Windows Mobile. This survey is current as of December 2008. A living version of this
survey is available at: http://blizzard.cs.uwaterloo.ca/eaoliver/platforms/.

I. Introduction

The recent year has seen an enormous growth in the
popularity and visibility of smartphones. In 2007,
smartphone sales rose 60% to nearly 115 million de-
vices [24]. By 2010, smartphone sales are expected
to surpass those of laptops [27]. The proliferation of
these devices has created new opportunities and chal-
lenges for mobile networks researchers: smartphones
have significant power constraints, low-power CPUs,
limited RAM and persistent storage, and slow I/O.
These devices are inherently mobile, operate primar-
ily over wireless channels, and are nearly always con-
nected to the Internet and/or a cellular network. When
faced with hundreds of devices across nearly a dozen
development platforms, the choice of mobile device
and platform is often met with unanswered questions.
The choice of development platform can have a di-
rect effect on the quality and completeness of a re-
searcher’s work.

In this paper I analyze the five most popular
smartphone platforms: Android (Linux), BlackBerry,
iPhone, Symbian, and Windows Mobile. Each has its
own set of strengths and weaknesses; some platforms
trade off security for openness, code portability for
stability, and limit APIs for robustness. This analysis
focuses on the APIs that platforms expose to appli-
cations; however in practice, smartphones are manu-
factured with different physical functionality. There-
fore certain platform APIs may not be available on all
smartphones.

To aid in the decision of platform selection, I have
distilled a set of requirements from an existing body
of mobile networks research [2, 18, 20, 22, 21, 4, 5, 9].

In the next section I explain each research require-
ment. In Section III I compare each mobile platform,
and in Section IV I summarize and conclude this sur-
vey.

II. Requirements

An ideal mobile research platform should expose the
following functionality to third party applications:

Network scanning: To access a wireless network,
each mobile device is required to scan for APs or cell
towers. The data returned from a scan contain infor-
mation needed to associate with the network. The
results of a scan can also be used to approximate
the location or assess the mobility of a user. Cell
tower scans are typically automated, whereas WiFi
and Bluetooth scans are almost always user initiated.
However, scanning can rarely be initiated by a third
party application. The results of the scan are also typ-
ically inaccessible. The ability to programmatically
scan and connect to a wireless network can signifi-
cantly impact the ability of a mobile device to serve
as research platforms.

Interface selection: The presence of multiple net-
work interfaces is common on many current smart-
phones. The most common interfaces are cellular,
WiFi, and Bluetooth. Each wireless technology has
a unique set of benefits and costs. For example, WiFi
has low monetary cost, but consumes more power than
a cellular data service such as EDGE. When multi-
ple interfaces are within coverage, most mobile plat-
forms naı̈vely direct all data traffic over the WiFi inter-
face to minimize monetary cost. Immediately routing
data over the least expensive interface is not neces-
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sarily optimal [29]. Moreover, this strategy restricts
experimentation and measurement across multiple in-
terfaces. Researchers require the means to route data
over a specific network interface.

Bluetooth I/O: Bluetooth’s short range and low
power consumption makes it an ideal method for
inter-device wireless communication. As researchers
we require the ability to create local Bluetooth ser-
vices for other devices to connect to.

Interface control: The ability to independently en-
able and disable network interfaces can have a signif-
icant effect on the battery life of a mobile device. The
wireless chipsets on most recent devices implement
an idle state that reduces the energy required to keep
an interface enabled [4]; however, when scanning or
transmission on a specific interface is not required, it
is more efficient to simply disable the interface.

Background processing: Experimentation often
requires monitoring and recording information in par-
allel with user activities and mobility. Therefore the
ability to run background applications is essential for
researchers.

Energy monitoring: For the foreseeable future,
maximizing battery life will continue to be a key con-
cern for mobile networks research. Scanning for APs,
transmitting data, and location sensing all have an en-
ergy cost that must be measured. As researchers, we
require a means to programmatically measure, (or at
least approximate), the energy consumed by a mobile
device.

Power saving control: A natural extension to mea-
suring power consumption is the ability to control it.
Because maximizing battery life is critical to all de-
vices, these features are typically built into the OS.
Devices commonly disable the screen, switch to a
lower performance CPU mode, or disable the WiFi in-
terface. On a mobile device, switching to a power sav-
ing mode is typically a function of parameters such as:
remaining battery level, idle time, input from sensors,
physical orientation (holstered), etc. However, there
are many situations where an aggressive approach to
power savings can have an adverse effect on research.
For example, in [18] we found that the Pocket PC
version of Windows Mobile frequently disabled the
WiFi interface when the screen turned off. To peri-
odically scan for WiFi APs, it was necessary to dis-
able power saving features. As device manufactures
continue to extend battery life and implement increas-
ingly aggressive power saving functionality, the abil-
ity for researchers to disable it will become increas-
ingly important.

Low-level memory management: Despite low-

cost and ample supply, RAM in mobile devices con-
tinues to be a scarce resource. Even in high-end $500+
devices, 64 MB of on board RAM is common, and
virtual memory paging is uncommon due to limited
storage. Running out of RAM often has an adverse
effect on an experiment that must be detected and ac-
counted for. In a recent experiment, we distributed
24 smartphones to participants at a major conference
[18]. As in other mobile studies, the participants were
instructed to use their device as they would normally.
We observed frequent peaks in memory allocation due
to the user using the camera, surfing the web, and
checking emails. Insufficient memory during these
allocation spikes translated into failed Bluetooth and
WiFi scans, failed local database queries, and crashes
in the experiment driver. In the short term, I expect
that memory related problems will become a norm in
mobile research. Actively monitoring memory levels
during an experiment will become an invaluable tool
to mobile researchers.

Persistent storage: The ability to write to a persis-
tent file or database is a basic requirement of any re-
search platform; a feature that may not exist on some
devices. Many mobiles platforms prevent third party
applications from accessing the file system. This has
the obvious positive side effect of protecting the de-
vice from running out of space or overwriting criti-
cal files, but prevents basic logging of data. Mobile
devices that cannot log data to persistent storage are
practically useless as research platforms.

Location sensing: Low-power GPS receivers and
cell tower/AP triangulation techniques [12] are now
found in many mobile devices. Although location
sensing comes with an energy cost, (and occasionally
a monetary cost), location information is commonly
used to provide context to a number of applications
including: navigation, search, and social interaction.
As these technologies continue to improve and scale
to large numbers of devices, location sensing in mo-
bile devices will undoubtedly become ubiquitous. As
researchers, we require the means to enable and dis-
able location sensing sub-systems and query the cur-
rent location from within applications.

II.A. Other Platform Requirements

While this list covers most research application re-
quirements, it clearly does not cover all of them. For
example, in [23] the authors exploit audio APIs in
Windows Mobile for proximity detection. In [13],
combinations of vibration and audio are used to sig-
nal the presence of buddies. The accelerometer, a
feature now found in every mobile platform, is used
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Android (Linux) BlackBerry iPhone Symbian Windows Mobile
Network scanning • ◦ • ∼ •

Interface selection ◦ • • • •

Bluetooth I/O ◦ • ◦ • •

Interface control • • ◦ ◦ •

Background processing • • • • •

Energy monitoring • • • • •

Power saving control • • ∼ • •

Low-memory management • • • • •

Persistent storage • • • • •

Location sensing • ∼ • • •

Table 1: Summary of mobile platforms requirements. Satisfied: • Partially satisfied: ∼ Not satisfied: ◦

in [8] to detect potholes while driving. Camera APIs
are used [26] to provide local service discovery. Mo-
bile social networking applications may also use the
address book and other personal information APIs to
infer trust and aid in content dissemination [1]. This
list is only limited by the imagination of researchers.
I encourage the community to submit additional re-
quirements for inclusion in the online version of this
survey.

III. Mobile Platforms

In this section I analyze the five most popular mobile
platforms and their success in meeting our research
needs. The results of this analysis are summarized in
Table 1. This platform analysis focuses purely on the
functionality provided by the OS. With the exception
of the iPhone, each platform depends on the features
of the physical device to implement its APIs. For ex-
ample, devices without WiFi antenna cannot scan for
WiFi APs, even though the platform may support it.

III.A. Android (Linux) [3]

Several Linux based platforms have recently emerged
for mobile devices: Maemo [15], Openmoko [17],
Qtopia [19], LiMo [14] and have been adopted by
Nokia, Samsung, Motorola, and other manufacturers.
However, none of them have garnered the attention
and wide spread support that Google’s Android has.
Since Android’s release it has become a popular mo-
bile platform. Unfortunately, Android’s current Java
API does not live up to our needs. Android supports
programmatic scanning for WiFi APs, and allows ap-
plications to keep the WiFi radio awake. However,
Android does not allow applications to control or es-
tablish connections over a specific network interface.

Bluetooth is also not supported in the initial (1.0) re-
lease of the Android SDK due to certification issues
of its profile implementations. Android does provide
memory and thread statistics and run-time memory
tracing through its debugging sub-system. Location
sensing using both GPS (if available) and cell tower
triangulation are also present in Android.

Power considerations are built directly into the An-
droid platform. While third party applications are able
to query the battery level and AC charging state, they
are also able to schedule and manipulate energy sav-
ing features. Applications may force the device to go
to sleep or maintain a specific power level. In the con-
text of performing measurements, fine grained control
over power consumption could be useful.

Android provides background non-user interactive
processing using a ‘Service’ model. Services are in-
voked by the Android OS, or through an alternate
application. These services may run for “an indefi-
nite period of time” with the caveat that they may be
killed if the system is under “memory pressure.” Al-
though Android employs a LRU termination strategy
and attempts to restart terminated services, it is impor-
tant to keep this caveat in mind when designing ex-
periments. To accommodate low-memory situations,
Android provides two forms of persistent storage: an
embedded SQLite database and conventional file I/O.
These mechanisms can be used to store a Service’s
state and provide storage and logging to third party
applications.

Android runs on top of the Linux 2.6 and is licensed
under the GPL. Although Android currently lacks the
complete set of ideal requirements, it is reasonable to
assume that they could be written once the platform is
fully released and open to the community.
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III.B. BlackBerry [6]

Contrary to popular belief, BlackBerry is an open plat-
form. Like Android, all BlackBerry applications are
written in Java and run in a protected run-time en-
vironment. As a development platform, BlackBerry
lives up to its reputation for robustness and reliability;
it has a rich set of libraries, and allows applications
to interoperate seamlessly. Unfortunately BlackBerry
falls short of the ideal research platform. The platform
does not allow programmatic scanning for cell towers
or WiFi APs. A third party application may only re-
trieve data about the cell tower or AP that it is cur-
rently connected to. However, BlackBerry provides
full support for the Java Community Process JSR 82
Bluetooth specification. BlackBerry applications can
therefore scan for neighbouring devices, initiate ser-
vice discovery, and connect to or create custom Blue-
tooth services. Unfortunately, before a BlackBerry
can connect to another device over Bluetooth it must
be securely paired. Bluetooth pairing on a BlackBerry
requires the user to enter a key. For two BlackBerrys
to communicate over Bluetooth they must enter the
same shared key.

With the recent addition of WiFi, BlackBerry has
added support for network interface specification
when establishing socket connections. Moreover, ap-
plications are able to independently enable and dis-
able the wireless radios, or Wireless Access Families,
found on a device. The BlackBerry platform pro-
vides support for background processing, which can
startup automatically when the device starts up. En-
ergy monitoring and memory facilities on the Black-
Berry are more refined than those on Android. The
platform provides applications many APIs for query-
ing the state of the battery, charging state, tempera-
ture, etc. Applications may also enable and disable
the screen/backlight (another significant energy con-
sumer), shutdown the device, and schedule it to wake
up. Unfortunately, BlackBerry does not allow appli-
cations to programmatically control the GPS; this is
probably due to privacy reasons. However, once the
user has manually enabled the GPS, applications may
retrieve the current location and receive notifications
when the device is near a specified coordinate or pre-
defined location.

As in Android, applications may directly query the
remaining level of Flash memory and RAM. Black-
Berry differentiates itself by allowing applications to
interact and cooperate with the memory management
facilities of the underlying virtual machine (VM).
Memory intensive applications may register with the
VM to receive low-memory warnings and requests to

free memory; a form of participatory garbage collec-
tion. Unlike Android, the BlackBerry OS does not kill
processes when the device runs low on memory; ap-
plications themselves terminate when they fail to allo-
cate memory and an ‘OutOfMemoryError’ is thrown.

Persistent storage on the BlackBerry is sufficient
for most research needs. The platform provides stan-
dard mechanisms for accessing files and manipulating
the file system. When the device storage approaches
full capacity, the platform throws an exception and
simply prevents the application from writing further.
The use of removable storage cards, such as MicroSD,
has become common on most mobile devices includ-
ing the BlackBerry. The card is typically accessed
through the device as a USB Mass Storage device.
This is the recommended approach to storing large
amounts of data; however, using removable storage
on the BlackBerry has one catch: enabling USB mass
storage to access the card from a PC unmounts the
card from the BlackBerry file system. This causes ap-
plication writing to the removable storage card to im-
mediately fail.

Developing on BlackBerry comes with the caveat
that code making low-level API calls must be signed
by Research In Motion. This requires a one-time pur-
chase of a $20 ‘code signing PIN’. However, having
the author’s identity strongly bound to the applica-
tion binary provides accountability and security to the
user.

III.C. iPhone (Mac OS X) [10]

Like the BlackBerry, Apple’s Mac OS X is tightly
coupled with its device: the iPhone. The iPhone is
an exceptional case in our survey. Out of the box,
the iPhone and SDK provided by Apple are severely
limited. The current SDK does not allow applications
to initiate a WiFi network scan or retrieve informa-
tion about neighbouring cell towers. The SDK allows
applications to detect if the iPhone has WiFi connec-
tivity; however, applications cannot transmit over a
specific network. Moreover, Apple prohibits band-
width intensive applications to be installed, nor can
third party applications run in the background. The
SDK does not allow applications to query the state of
the battery or the level of available RAM. On the plus
side, the iPhone SDK does provide persistent storage
through conventional files and an integrated SQLite
database. The platform also provides location sens-
ing through the ‘Core Location Framework’, which
determines its position using an integral GPS or cell
tower/WiFi triangulation.

As a research platform, the functionality provided
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by the Apple SDK is insufficient. Fortunately, the
iPhone has been liberated by members of the black hat
community. Unlocking, or ‘Jail Breaking’, the iPhone
takes a matter of minutes using tools such as ‘iPlus’.
After installing the GNU or BSD sub-systems [7],
the iPhone has all the capabilities of a standard Unix
system. The iPhone OS provides APIs for both cell
tower and WiFi scanning, and network connections
are made using conventional BSD sockets. However,
I found no evidence in Apple documentation or in a
survey of third party application that indicates that ap-
plications may enable and disable network interfaces.
The iPhone also provides no support for Bluetooth
I/O. As in previous systems, the iPhone OS provides
APIs to query the battery capacity, voltage, and charg-
ing status.

Unlike previous systems, the iPhone has a virtual
memory system with paging. Low-memory condi-
tions are therefore less critical to the iPhone; however,
one should be aware that frequent paging in conjunc-
tion with persistent flash memory I/O will have an ad-
verse effect on battery life. iPhone is also far more
aggressive in power management than other devices.
By default, when a user is not interacting with the de-
vice, the screen is disabled and background processes
are suspended. To run applications in the background
of an unlocked iPhone, it is necessary to override the
power saving setting and force the device to stay on.

Developing on an unlocked iPhone has initial chal-
lenges; documentation is generally poor and it will
probably take several attempts to successfully unlock
the device and install the desired sub-systems. The
iPhone has a final caveat, future versions of the iPhone
may restrict this openness, but given Apple’s recent
endorsement of iPhone unlockers [11], it is unlikely.

III.D. Symbian (S60) [25]

Holding (currently) 46.6% of the global smartphone
market, Symbian OS is a sophisticated development
platform supporting a wide range of languages, fea-
tures, and hardware configurations. There are cur-
rently two major platforms built on top of Symbian:
the S60 from Nokia and UIQ from Sony. Nokia’s
S60 is the dominant Symbian platform, with more fea-
tures, and supports native Symbian C++, Java, PERL,
and Python. For the purposes of this survey I ignore
UIQ and focus on the features of Symbian with S60.

Symbian’s support for network scanning is
mediocre. Symbian applications can program-
matically scan and retrieve information about
neighbouring WiFi APs, but they cannot extract the
same information from the cellular network. Like

the BlackBerry, Symbian only allows applications to
retrieve information from the single cell tower that it
is connected to. Symbian OS sockets are similar to
BSD sockets and can be configured to bind a specific
network interface. If a connection is created without
specifying the interface, Symbian will automatically
select an available one. Symbian does not support
programmatic control of interfaces, and enables the
WiFi interface only when it is being used. Symbian
also supports the JSR 82 Bluetooth specification and
suffers from the same security feature as BlackBerry:
Symbian does not allow Bluetooth I/O unless the
devices are securely paired.

Symbian’s support for GPS location sensing and
persistent storage is consistent with previous plat-
forms. Symbian provides conventional C style mecha-
nisms for file I/O and includes an embedded relational
database. Like iPhone, Symbian implements a virtual
memory system and allows applications to query the
physical memory levels.

Nokia’s efforts in Power Management are notable.
Of the five platforms surveyed, Nokia is only one
with a developer tool, the ‘Nokia Energy Profiler’,
that actively monitors the power consumption on the
device. The tool is free to download, easy to use,
but requires a Nokia device running the latest ver-
sion of S60. On the device side, Symbian contains a
framework for power management that allows appli-
cations to lock the power state, receive notifications of
changes to power modes, adjust power requirements,
or wakeup/shutdown the Symbian kernel.

Symbian also offers a Java runtime environment;
however, unlike Android and BlackBerry, Symbian’s
Java environment is constrained to the Java ‘Mo-
bile Information Device Profile’ (MIDP). Constrain-
ing Symbian Java applications to MIDP makes them
highly portable, but the set of available APIs are very
limited and do not satisfy the needs of mobile re-
searchers.

III.E. Windows Mobile [28]

To my great surprise, Microsoft’s Windows Mobile
satisfies every one of our research requirements. The
OS provides facilities to scan for cellular, Bluetooth,
and WiFi networks, establish connections on a spe-
cific network interface, enable and disable interfaces,
determine the current location using GPS, and to run
applications in the background. Like the iPhone, Win-
dows employs a virtual memory system and memory
is therefore not a concern for applications. However,
since Windows Mobile is commonly deployed on de-
vices with less than 64 MB of total Flash memory,
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applications should be careful not to over indulge in
memory.

Bluetooth on Windows Mobile has distinct ad-
vantages over BlackBerry and Symbian. The Win-
dows Bluetooth API does not require devices to be
paired! Although this ‘feature’ exposes Windows Mo-
bile users to a range of interesting attacks, it has huge
advantages when prototyping mobile systems: de-
vices can connect to each other without user interven-
tion.

Windows provides applications with standard file
I/O facilities and an integral database engine. Appli-
cations may also maintain state in a persistent global
system registry consisting of key pairs (a mechanism
similar to the Windows registry). As a researcher writ-
ing experimental code, I have found that the registry
is an invaluable tool for storing state across countless
crashes.

As a change to the conventional approach, Win-
dows allows applications to register for changes to
the battery status. Applications are notified when, for
example, the battery level changes or the device is
plugged in for charging. Third party applications may
also specify their own power requirements to prevent
the device from entering a power saving state.

The downside of Windows Mobile is that Microsoft
has no control over which components of its OS are
supported by device manufactures (OEMs). Microsoft
distributes a tool to OEMs called the “Adaptation
Kit for Windows Mobile” that contains approximately
90% of the source code of the Operating System and
drivers [16]. OEMs use the kit to customize the OS for
their hardware. OEMs are also responsible for imple-
menting their own network stacks and selecting the set
of APIs that third party applications may call to access
the network. This has translated into a cornucopia of
devices each with a unique set of missing features and
general instability.

IV. Summary and Conclusion

To the average consumer, each platform is function-
ally equivalent. They all support making phone calls,
saving files, taking pictures, and other common tasks;
however, there is more to a mobile platform than
meets the eye. Each platform has its own develop-
ment environment that supports different sets of pro-
gramming languages and APIs.

Android has a rich set of APIs, but without Blue-
tooth it currently lacks the necessary requirements for
multi-NIC related research. BlackBerry is the most
robust mobile platform in our survey. It lacks some

of the features of other platforms, but makes up for it
with ease of development and stability. In five years
developing applications for BlackBerry, I have never
experienced a crash. Out of the box, iPhone is a sub-
standard research platform; however, unlocking it ex-
poses a rich set of APIs from its Mac OS X foun-
dation. The unlocked iPhone currently lacks the de-
veloper tools found on other platforms, which makes
it more difficult to develop and debug applications.
Conversely, Symbian includes an excellent set of de-
veloper tools and the platform supports many of our
requirements. Unfortunately, Symbian is widely re-
garded as the most difficult platform to develop on.
This fact alone negates many of its qualities and hurts
its viability as a research platform. Finally, Windows
Mobile, running on a wide range of devices and hard-
ware configurations, has a rich set of APIs; unfor-
tunately, support for those APIs is OEM dependent.
Moreover, there is little incentive for OEMs to support
niche APIs such as programmatic power management
and network scanning.

The awkward conclusion of this survey is that: none
of today’s mobile platforms fully meet the needs of
researchers. There is no single platform or device
that can do everything reliably. The choice of plat-
form boils down to the needs of the individual re-
searcher; this survey should make that decision easier.
Of course, this survey is time-sensitive. Its validity
will decay as platforms evolve to meet the demands of
consumers and new technologies emerge. I encourage
others to contribute new ideas to the online evolution
of this survey. Hopefully, as smartphones continue to
proliferate and become an invisible tool in our lives,
their software APIs will expand and their usefulness
as mobile research platforms will increase.
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