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ABSTRACT

The Short Message Service (SMS) is one of the most ubig-
uitous wireless technologies on Earth. Each year hundreds
of billions of messages are sent, demand continues to grow,
and competition between cellular providers is driving prices
down. These trends create practical opportunities for SMS
in today’s mobile systems. In this paper we present the de-
sign and implementation of a robust SMS-based data chan-
nel, or SMS-NIC, that runs on a variety of mobile plat-
forms. Through integration with an existing mobile system,
we show that the SMS-NIC has little operational overhead
and provides efficient, reliable transport for large messages
sent over the cellular network.

We motivate the design of the SMS-NIC through a char-
acterization of SMS using workloads consisting of bursts of
messages between cell phones tethered to Linux PCs and
between smartphones. This analysis differs from previous
SMS studies by focusing on transmission patterns that dif-
fer from normal SMS use. Through this characterization
we show that bidirectional traffic and the choice of hard-
ware have a significant effect on transmission rate, delay,
and message reordering. We also show that burst size has
no effect on SMS, losses are rare, and messages may be du-
plicated during transport.
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General Terms

Experimentation, Design, Reliability.
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1. INTRODUCTION

Since its introduction in 1991 [7], GSM has evolved into
one of the most ubiquitous technologies on the planet. One
of the services provided by GSM is the Short Message Service
(SMS). SMS allows cell phones to exchange short messages
with each other or services such as Internet search, calen-
dar notification, e-voting, etc. In 2005, over a trillion SMS
messages were sent and received by cell phones all over the
planet'. This number is predicted to increase to a stagger-
ing 3.7 trillion messages by 20122. In many countries, com-
petition between GSM service providers, coupled with the
growing demand for Multimedia Messaging Service (MMS),
has driven the cost of sending SMS messages to fractions of
a penny or free. Today in the United States, unlimited SMS
packages cost as low as $5 per month®. As the use of the
cell phones continues to climb, we expect the prices for basic
SMS service to continue to fall.

The low-cost of SMS and the ubiquity of today’s cellu-
lar networks present interesting opportunities for its use in
mobile systems operating in challenged network environ-
ments. Today there are many mobile systems that could
benefit from using SMS as a control channel. In particu-
lar, DakNet [8], KioskNet [4], Haggle [9], and DieselNet [1],
could exploit SMS to improve and coordinate routing, pro-
vide end-to-end message delivery notification, track vehicles,
establish cryptographic session keys, etc.

As a data channel, SMS is greatly inferior to EVDO,
GPRS/EDGE, and other cellular data services. SMS has
significantly lower data rates, high latency, a small fixed
message size of 140 bytes, and messages can be lost dur-
ing transport. However, data services are very expensive,
sparsely deployed in developing regions, and while they can
send megabytes of data effortlessly, exchanging kilobytes of
data is sufficient for many applications. In 1999, the En-
hanced Message Service [2] (EMS) was defined as an ap-
plication level extension to SMS. Using EMS, devices may
send messages as large as 918 bytes. This is an improve-
ment; however, for SMS to be used as a general purpose
data channel, we require a means to reliably transfer much
larger messages.

In this paper we present the design and evaluation of a
general purpose data channel built on top of SMS. We have
designed this SMS-NIC to run efficiently and reliably on
a variety of resource constrained mobile devices. The SMS-
NIC is implemented in Java and complies with the Java Con-

"http://www.portioresearch.com/opinion1_sms.html
http://www.portioresearch.com/press6.html
Shttp://tinyurl.com/6az5gh



nective Limited Device Configuration (CLDC) profile. By
abstracting OS specific functionality such as logging, sending
and receiving SMS messages, and UI feedback, the SMS-NIC
can run on both personal computer environments and CLDC
enabled cell phones and smartphones. The current release
of the SMS-NIC has been evaluated on both BlackBerry, (a
CLDC compliant device), and Linux. Other platforms can
be supported with minimal effort.

To motivate the design of the SMS-NIC, we present a
characterization of SMS that builds upon previous work by
Zerfos et al. [11, 5]. In these papers Zerfos examines SMS
traces collected by a cellular carrier in India over a three
week period. The traces consist of over 59 million messages
exchanged by more than ten million users (approximately
10% of India’s total mobile subscribers). These traces are
used to classify the current uses of SMS and measure how
conversation threads progress across a series of messages.
Their work provides a preliminary classification of the be-
haviour of messages as they traverse the cellular network.
In particular, the authors observe that nearly 5.1% of mes-
sages are lost during transit due to expiration or denial of
delivery. They found that 73.2% of messages reach their
recipient within a ten second delay, 17% require more than
one minute, and the remainder take over an hour and a
half. A data set this size is probably an accurate macro
representation of SMS; however, we believe that an aggre-
gate characterization does not provide the details needed to
design a data service built on top of the SMS.

This paper builds on the work by Zerfos by examining the
behaviour of SMS from a micro perspective, by exchanging
messages between pairs of devices. Our testbed consists of
combination of BlackBerrys, Nokia cell phones, and a PCM-
CIA EDGE card. Because our study is biased towards a
design of an SMS data channel, we focuses on traffic pat-
terns that differ significantly from normal [5] human gener-
ated SMS traffic. Our tests send SMS messages as fast as
possible - much faster than a human cell phone user could
manually send messages. While previous work observes the
presence of mass message senders, it does not examine them
as an isolated group.

This paper is organized as follows. In the next section
we present the characterization of SMS using a variety of
commodity hardware. This characterization shapes the pro-
tocol design and architecture of the SMS-NIC in Section 3.
Section 4 provides implementation details and performance
benchmarks. We conclude in Section 5.

2. CHARACTERIZING SMS

When designing a network protocol, it is important to un-
derstand the characteristics of the underlying network. Pre-
vious studies [11, 5] characterizing SMS have examined the
service from an aggregate macro perspective. These studies
do not consider the characteristics of SMS for single users
sending bursts of messages and hence do not provide enough
insight to design an efficient SMS-based data channel. We
seek to better understand the following properties of SMS:

e Transmission time: The time required to transmit
an SMS message from the device is affected by the cel-
lular signal strength, medium contention, and in some
cases communication latency with the device circuitry.

e Delay: Once an SMS message has been accepted for
delivery it is subject to several sources of delay: prop-
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Figure 1: Tethered cell phone test configuration.

agation delay as the message traverses the cellular net-
work, queuing delays throughout the network, and trans-
mission delay as the message is delivered to the recip-
ient. The network may throttle or artificially delay
messages from some users to prevent them from flood-
ing the network.

e Loss rate: SMS messages can be lost due to trans-
mission failure, congestion in the cellular network(s),
or be rejected in transit due to data corruption. If a
receiver is not available, a message may also expire in
the network while waiting for delivery.

o Message reordering: Depending on the design of
the cellular network, messages may arrive in a different
order than they were sent.

These properties may be affected by the time of day, the
day of the week, burst size, and the device used to transmit
messages. In the following sections we examine these criteria
and present our results.

2.1 Experiment setup

We evaluate the behaviour of SMS using two configura-
tions that reflect how the SMS-NIC would be used in prac-
tice: cell phones connected to commodity PCs and between
SMS capable smartphones.

2.1.1 PCwith tethered cell phone

This configuration mimics the hardware configuration found
in existing challenged network deployments [8, 4, 1]. The
testbed consists of a low-power, low-cost headless computer



Configuration Mean | Minimum | Maximum | Median | Std. dev.

Transmission Tethered cell phone 5.59 4.19 29.23 5.63 0.76
time (sec) Smartphone 4.03 2.98 39.36 3.34 3.81
Smartphone (bidirectional) | 9.59 2.24 67.90 3.41 14.10

Delay (sec) Tethered cell phone 289.31 3.19 14534.32 14.00 1247.83
Smartphone 52.22 0.616 388.87 9.66 72.25

Smartphone (bidirectional) | 203.02 1.98 645.56 173.44 174.19

Inter-message Tethered cell phone 67.32 0.0 14511.02 1.68 591.84
arrival time (sec) Smartphone 8.51 0.28 92.90 3.51 16.91
Smartphone (bidirectional) | 28.14 2.90 274.08 5.59 39.97

Table 1: Aggregate SMS transmission time, delay, and inter-message arrival time for tethered cell phone and

smartphone test configurations.

from Soekris Engineering (net4801) and a Pentium 4 desk-
top PC. Both computers ran Ubuntu Linux and were each
equipped with a recycled Nokia 3390 cell phone attached
over USB. Sending and receiving SMS messages was per-
formed using an application called Gammu®*. There are sev-
eral open source packages for interacting with cell phones.
Gammu was chosen because of its active support for Nokia’s
proprietary FBUS® protocol and the Hayes AT instruction
set. Both computers were accessible over a LAN, which was
used as a test control channel. The LAN connection also
allowed the computers to synchronize their clocks to the
university’s NTP server. Clock synchronization provided
millisecond accuracy when tracking sent and received mes-
sages. Finally, both cell phones were on the same cellular
network (Rogers), contained voice-only SIM cards, and were
located within several meters of each other. Figure 1 illus-
trates this testbed setup and provides a high-level overview
of the test procedure.

Our primary evaluation of SMS consists of sending ten
messages per hour for one week from the Soekris (sender)
to the desktop PC (receiver). We expect that ten messages
(1400 bytes) represent a typical workload for the SMS-NIC.
In each test, the sender first connects to the receiver to in-
voke a background process that periodically checks for newly
received SMS messages every 50 ms and records their ar-
rival time. Once the environment is correctly configured,
the sender begins sending SMS messages to the receiver
by making a synchronous call to the Gammu application.
Gammu sends SMS messages over the serial connection with
the Nokia cell phone using the FBUS protocol. Messages are
placed in the cell phone’s SMS “outbox” and transmitted by
the phone as if they had been created by a user.

We measure transmission time by sampling the timestamp
before and after the call to Gammu. Our measurement
of transmission time therefore consists of both the wireless
transmission time and the time Gammu spends communi-
cating with the cell phone. Each SMS message sent consists
of an integer representing the current hourly test and an
index for the current message.

On the receiver side, SMS messages are received using the
SMS daemon service, smsd, packaged with Gammu. smsd
communicates with the cell phone through Gammu. Unfor-
tunately, this requires that smsd polls the cell phone’s SMS
“inbox” for new messages. We configured smsd to poll the
card in one second intervals. By polling we introduce, on av-
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erage, an additional 0.5 seconds of delay. This was the most
aggressive polling interval possible. Messages retrieved from
the phone are each written to a file on the receiver and their
arrival time is recorded by the background scanning process.

When the sender has finished sending, it connects to the
receiver and waits for all messages to be received. A failure
to deliver all of the messages is logged. Periodic anomalies,
such as excessively long delay, were then verified manually.

Unfortunately, the cell phones did not support program-
matic querying of the signal strength or the cell tower that
they were connected to; both variables could have an effect
on our study. The signal strength was observed manually
by periodically checking the indicator bars on the phones’
displays. The cellular signal strength on the cell phones was
approximately 60% throughout the tests.

In several tests the PC’s recycled cell phone was sub-
stituted for a Sony Ericsson GC82 EDGE PCMCIA card.
Communication with the card was erratic due to poor Linux
driver implementation. We omit these results from our study;
however, the use of unreliable hardware illustrates an impor-
tant variable in our study, NIC dependency, which we revisit
in Section 2.2.2.

2.1.2 Smartphoneto smartphone

A second series of experiments was designed to assess the
effect of signal strength, cell tower changes, and provide a
tighter relationship between the test driver and sending and
receiving messages. Recall that when using Gammu, a mes-
sage is sent by first placing the message in the SMS outbox
on the phone. The phone then transmits the message while
Gammu polls the outbox to check if the message has been
sent. In contrast, on smartphones, a messages is sent using
a blocking call into the OS that passes the message directly
to the GSM stack for transmission. Similarly, receiving mes-
sages consists of a blocking call into the OS. When a new
message arrives, it is passed to the application immediately;
thus eliminating the polling delay.

The smartphone test suite consists of two Java applica-
tions, a sender and receiver, each running on a BlackBerry
8820 smartphone. The sender consists of two threads: one
that sends messages in a closed loop and a second that re-
ceives any messages echoed back to it. At startup, the sender
application prompts the user for the number of messages to
send. In this round of tests, we send bursts of 10, 20, 40, and
80 messages. The receiver consists of one thread that oper-
ates in closed loop and blocks on the receipt of a message.
The receiver may be invoked in an “echo” mode, which will



Configuration Mean | Minimum [ Maximum | Median | Std. dev.
Cell tower Smartphone 21.72 0.52 178.96 9.60 26.61
duration (sec) | Smartphone (bidirectional) | 33.91 0.56 776.31 12.31 71.55

Table 2: Time associated with a GSM cell tower.

cause the application to echo messages back to the sender
before blocking to receive another message. Placing the re-
ceiver in echo mode allows us to evaluate the behaviour of
bidirectional SMS traffic. Both applications record the cur-
rent timestamp (in milliseconds) when sending and receiving
messages to local files on the device. Both devices used the
same voice-only SIM cards used in the previous experiment.
Their clocks were synchronized to the GSM network time.
On both devices we record the signal level of the cellular
interface (RSSI) and the GSM cell tower ID that the device
is currently connected to.

2.2 Analysis

Over a period of seven days, we successfully transmitted a
total 1644 messages across the tethered cell phone testbed,
and 745 messages between the two smartphones. Our trans-
mission success rate was 98.5% with 15 messages rejected
by the network, and 21 messages that failed to send due to
software failure on the sender side. Contrary to our expec-
tation, we found that the day and time had no effect on
service. This would imply that our cellular network is pro-
visioned to handle bursty workloads. The following sections
detail our characterization of the transmission and loss rate,
delay of SMS. Aggregate results for both the cell phone and
smartphone tests are summarized in Table 1.

2.2.1 Transmissionrate

The transmission rate was the most consistent variable
in our study. Unidirectional transfer yields similar results
across both the cell phone and smartphone tests. The dif-
ference is attributed to the Gammu delays in storing the
message to the cell phone’s outbox and polling the phone to
check if the message has been sent. Under bidirectional con-
ditions, we see a significant increase in transmission time.
We attribute this increase purely to medium contention;
both the device and network compete to transmit their mes-
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Figure 2: Cumulative distribution function for SMS
delay.

sage, which causes the ALOHA protocol underlying GSM’s
control channel to introduce random delays.

2.2.2 Delay

SMS delay was a highly variable quantity in our study;
a variable that is directly dependent on the hardware used.
We measured delay as the difference between the receiver re-
ceiving the message and the sender returning from sending
call. Average delay over all successfully received messages
on the cell phone test was 289.31 seconds. This value is
inflated by a series of messages that took over four hours
to deliver. Failure to deliver message was primarily due to
communication failures with the phone. Concurrent polling
of the phone’s SMS inbox for newly receiving message and
deleting copies of retrieved messages, while the phone was
receiving messages from the network, frequently caused the
underlying FBUS protocol to enter an inconsistent state.
In many cases Gammu was unable to retrieve the messages
even though they were already present on the phone. More-
over, substituting a cell phone for the EDGE card increased
average delay by nearly a factor of two; reducing the polling
period to five seconds had very little effect. Although these
increases in delay are not due to the cellular network, it is
important to note the effect that hardware can have. From
the perspective of an application using SMS, unreliable hard-
ware is indistinguishable from poor network services.

In the absence of software failures, cell phones performed
nearly as well as the unidirectional smartphone. Minimum
and median delay is higher for cell phones due to polling
delays on both the sender (to verify that the message has
left the phone’s outbox) and receiver. Burst size also has no
effect on delay, which is contrary to our hypothesis that the
SMS network is leaky bucket regulated.

Bidirectional traffic between the smartphones had a sig-
nificant effect on delay. Average delay increased by a fac-
tor of four from 52.22 to 203.02 seconds. These results
are illustrated in Figure 2. This increase is attributed to
medium contention that leads to random ALOHA delays;
signal strength in both the unidirectional and bidirectional
tests was relatively stable. Occasional drops in signal strength
frequently resulted in a cell tower change. This is expected
behaviour as defined in the GSM standard [7]. In some cases
changing cell towers translated into both increased transmis-
sion time and delay; in others, the tower change had no ef-
fect. Interestingly, bidirectional communication did increase
the duration that each phone spent on a single cell tower (see
Table 2). This increase is likely the result of ALOHA delays
on the control channel, which prevent the tower from signal-
ing a handover to another tower; however, without low-level
access to the smartphone’s GSM stack, it is impossible to
say for sure.

2.2.3 Loss

The average SMS loss rate across all tests was 3.89%.
During the cell phone test, we observed peaks in losses dur-
ing business hours on two days of the study. However, re-



running the experiment on a subsequent week found no ev-
idence that SMS traffic was consistently increased on these
days. We found no correlation between the loss rate and
transmission order or burst size. The loss rate is also inde-
pendent of the device used.

We observed that SMS messages are duplicated at a rate of
3.1% and 0.8% on the cell phone and smartphone testbeds
respectively. Duplicate messages are often a side effect of

poor communication between the phone and the service provider.

In the smartphone case, duplicate messages were directly
correlated with a change in cell tower. It is likely that the
message was received by the device, but communication was
severed before the tower could confirm delivery; thus trig-
gering a resend. On the cell phone test, manual examination
of the smsd logs found that approximately 2% of duplicate
messages were caused by a bug/feature of Gammu that re-
set the connection with the phone when the communication
protocol entered an inconsistent state.

2.24 Messagereordering

Surprisingly, the rate of message reordering is highly de-
pendent on the device used. Cell phones have a reordering
rate of 2.53%. The smartphone tests reorder 31.72% and
41.95% of messages for unidirectional and bidirectional traf-
fic! This bizarre result was verified manually by observing
communication with the cellular network, (visible as arrow
icons on the BlackBerry’s screen), and displaying the mes-
sage contents to the screen as they arrive.

3. DESIGN

We begin the design of the SMS-NIC with a summary of
the key points from our characterization:

e NIC dependency: The choice of hardware has an
impact on the behaviour of SMS.

e Bidirectional traffic: Concurrent transmission by
both the mobile and network under bursty conditions
increases transmission time, delay, and message re-
ordering.

e Message reordering: Bursts of messages may expe-
rience significant reordering.

e Variable inter-message arrival times: Variable
delay coupled with message reordering causes messages
transmitted at a constant rate to arrive intermittently.

e Losses: Messages are rarely lost and occasionally du-
plicated. Messages that do not arrive in the expected
order are more likely to be reordered than lost.

e Burst size: Burst size does not have an effect on the
behaviour of SMS.

e Messages remain intact: Although it is not part of
our characterization, it is worth mentioning that SMS
guarantees message integrity.

Our design is further motivated by the requirement to
minimize monetary cost, maximize throughput, and recover
from lost or re-ordered SMS messages. Although we pre-
dict that SMS messages will continue to decrease in cost,
the service is not yet free; we must minimize the number
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Figure 3: The format of SMS messages exchanged
between SMS-NICs.

of messages exchanged. In contrast, throughput is maxi-
mized (34.77 bytes/second) by sending messages continu-
ously back to back. Our flow and error control strategies are
subject to these constraints. Moreover, they must operate
over the shared SMS channel with the previously described
behaviour.

3.1 Protocol

The communication protocol between two SMS-NICs is
designed to support a wide variety of applications and user
defined settings while maximizing the payload of a single
message. We outline the message structure and flow and
error control methods.

3.1.1 Messageformat

Each transmitted SMS message contains a small fixed size
header and message payload. Messages exchanged between
two SMS-NICs consist of short messages, standard messages,
and control messages. The format of these messages is illus-
trated in Figure 3. Short messages consist of data that is
small enough to fit into a single SMS message. We expect
that short messages will be common, so we have included
this special case to reduce the header size by two bytes.
Standard messages are designed to provide fragmentation
and reassembly of larger data. These messages consist of
a 5 byte header, and a 135 byte payload. We have chosen
to limit the maximum data size supported by the SMS-NIC
to 32 KB. We believe that 32 KB (approximately 243 SMS
messages) is a practical and reasonable upper bound. Sys-
tems that require larger messages should switch to a cellular
data service such as GPRS/EDGE. We will discuss control
messages later in this section.

The first byte consists of a two bit protocol version, a
three bit message type, and three flag bits. The first bit
signals that the payload is compressed. The last two bits
are currently unused; however, we foresee using one bit to
signal that the payload is encrypted.

3.1.2 Flow control and error control

The SMS-NIC provides flow control and error control through

a simplified version of the NETBLT protocol [3]. In NET-
BLT, the sender communicates with the receiver by exchang-
ing a series of large data aggregates called buffers. When
transferring a buffer, the sender fragments it into a set of
packets. The packets are then sent across the network to
the receiver where they are reassembled into the original



buffer. When the last packet in the buffer arrives, the re-
ceiver checks to see if all the packets in the buffer have been
correctly received. The receiver then sends an acknowledge-
ment (ack) to the sender containing a bitmap that indicates
which packets have been received or lost.

NETBLT has several distinct advantages that make it
suitable for use in an SMS network. Bidirectional traffic is
minimized through the use of a cumulative ack when all of
the packets have been received. The cumulative bitmap ack
also tolerates message reordering, random losses, and vari-
able inter-arrival times. Because burst size has no effect on
SMS, NETBLT may transmit all packets in one continuous
burst. This property significantly reduces the complexity of
the underlying implementation. Finally, the low loss rate of
SMS ensures that the quantity of ack messages will be low.

The SMS-NIC’s protocol differs from NETBLT by using
only one buffer that is bound to 32 KB in size; thus remov-
ing the need to coordinate block transfer and to reassemble
blocks of data at the receiver. Like NETBLT, buffers are
fragmented into SMS message sized chunks for transmis-
sion to the receiver. The sender initiates communication
by sending a single message to the receiver that contains
the size of the overall data, an integer representing the cur-
rent transaction, and the first chunk of data to exchange.
Upon receiving the initial message, the receiver may accept
or reject the session by sending an ack back to the sender. If
either message is lost, the sender will retransmit the original
message several times before failing.

After receiving the initial ack accepting the transaction,
the sender begins transferring each remaining chunk of data.
Each chunk is transmitted as a full SMS message to the re-
ceiver’s phone number. When sending each message, the
sender adapts to transmission failures by resending mes-
sages; however, it is not aware of losses in the network. The
sender continues to transmit chunks until none remain.

FEach message sent by the sender causes an ack timer to
be set. When the timer expires, the sender begins retrans-
mitting non-acked chunks to the receiver. The sender’s ack
timer is set to a static value of 200 seconds (approximately
four times the mean delay of the smartphone experiment).
In practice, we found that a relaxed timer at the sender
prevented many redundant retransmissions of messages; re-
transmissions that almost always arrive after the original
message.

On the receiving side, messages are received and their as-
sociated data chunks are placed into a pre-allocated buffer.
While receiving messages, the receiver exponentially aver-
ages the inter-arrival time of the messages. Each received
message also causes a timer to be set to three times the av-
erage inter-arrival time. This technique allows the receiver
to adapt to fluctuations in delay that cause message inter-
arrival times to grow. If the timer expires, the receiver trans-
mits an ack indicating the chunks that have been received.
The timer is then reset to twice its previous value. If no
messages arrive after three ack retransmissions, the receiver
discards the current buffer.

Like NETBLT, when the last chunk has been placed in
the buffer, the receiver sends a complete ack to sender. Be-
cause this final ack may be lost, the receiver maintains record
of the completed data and retransmits completed acks as
needed.
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Figure 4: Architecture of the SMS-NIC including
example SMS Handlers.

3.2 Architecture

As an open source project, the architecture of the SMS-
NIC was influenced by the need for platform portability and
code modularity. To run on a variety of resource constrained
devices, the architecture minimizes memory allocation and
copying by reusing objects, timers, and threads as often as
possible. To provide clean integration with existing mobile
systems and applications, the SMS-NIC provides a series of
APIs that abstract the surrounding environment from the
internal operation of the NIC.

The architecture is illustrated in Figure 4. It consists of
the following components:

e SMS-NIC API: The SMS-NIC API is the applica-
tion interface into the SMS-NIC. This API allows host
applications to send and receive data, register a view,
configure, and start and stop the SMS-NIC. This inter-
face provides five sub-interfaces: the SMS Data, SMS
Address, SMS Logger, SMS View, and SMS Compres-
sion interfaces. Receive buffers within the SMS-NIC
implement the SMS Data interface. This interface al-
lows fully received data to be passed directly to ap-
plications without allocating new memory. The SMS
Address interface is designed to ease integration of the
SMS-NIC into existing applications. This interface is
implemented by objects in the host application that
are responsible for maintaining addresses and removes
the need for redundant copying of addresses (typically
strings) into the SMS-NIC. The SMS Logger is a sim-
ple interface that allows the host application to specify
how the SMS-NIC should log its activities. The SMS
View API provides a call back mechanism for the host
application to be notified of changes to the internal
state of the SMS-NIC. This interface is primarily in-
tended to support a GUI in the host application. Fi-
nally, each mobile platform provides a custom set of
functions to compress and decompress data. We ab-
stract this functionality from the SMS-NIC using the
(optional) SMS Compression interface.



e SMS Handler API: Each mobile platform has a unique
method for sending and receiving SMS messages. The
SMS Handler API is designed to abstract these differ-
ences from the internal operation of the SMS-NIC.

e SMS Send Work: This component contains the data
sent from host application data and is responsible for
providing SMS message sized chunks of data to the
SMS Sender for transmission. Chunks are retrieved
from the work object by a linear sequence number
starting from the beginning of the given data. This
component also maintains the state of a transaction,
which includes the messages that have been success-
fully received, the last time ack was received or mes-
sage was sent. The reciprocal of this component is
SMS Receive Work, which reassembles messages into
application data on the receiver’s side.

e SMS Sender: The SMS sender is one of the two
threads in the SMS-NIC. The primary function of this
component is to dequeue data passed into the SMS-
NIC for transmission, compress it if configured to do
so, wrap the data in an SMS Send Work object, and
transmit chunks of the data as SMS messages. The
sender stores SMS work objects in a table, which is
keyed by a one byte integer work identifier that is
chosen in increasing order by the sender to uniquely
represent a transaction.

The SMS Sender maintains two sending queues: a
high priority queue for control messages and a sec-
ond queue for sending messages containing application
data. Messages are placed in both queues by the sender
thread and by the Control Message Handler when pro-
cessing received acks. The sender is also responsible for
recovering from transmission failures. In many cases,
this involves simply pushing the SMS message back
onto the sending queue.

To minimize the use of threads and timers in the SMS-
NIC, the sending thread is not always blocking waiting
for messages to send. Each blocking operations times
out to allow the sending thread to discard received
data that is incomplete, expire data that was unsuc-
cessfully sent, and retransmit data or acks when an
ack or receive timeout occurs.

e SMS Receive Work: On the receiving side of the
SMS-NIC, data is reassembled within an SMS Receive
Work object. This component maintains a receive
buffer for the full data size and a bitmap of all re-
ceived messages. The bitmap is stored with a pre-
formatted control message. When sending an ack, this
special message is retrieved from the work object and
transmitted to the sender. As mentioned above, this
component implements the SMS Data interface, which
allows completed data to be passed to the host ap-
plication unmodified. Although passing this data to
the application temporarily leaks the control informa-
tion contained within the Receive Work object, it is
more efficient than reallocating and copying the re-
ceived data.

e SMS Peer: The SMS Peer is a simple component
that stores a set of partial Receive Work objects from

a specific source address (phone number). This com-
ponent also temporarily stores the work identifier of
completed work. This prevents new Receive Work ob-
jects from being allocated when highly delayed mes-
sages arrive after the work has completed. When an
SMS Peer contains no work objects or completed work
identifiers, it is considered empty and is deleted.

e SMS Receiver: The SMS Receiver is the second
thread in the SMS-NIC. The primary roll of this com-
ponent is to block on the arrival of an SMS message.
When a message is received it takes one of two paths:
control messages are passed to the Control Message
Handler and data messages are passed to an SMS Peer
corresponding to the message’s source address. If a re-
ceived message completes a work object, then the work
object is removed form its peer container and placed
in the application receive queue.

A secondary roll of the Receiver is to enforce upper
bounds on both the data size and the number of con-
current work objects that can be handled by a receiver.
Messages for data that are either larger than a user
specified limit or exceed 32 KB are discarded.

e Control Message Handler: The Control Message
Handler implements the communication protocol be-
tween two or more SMS-NICs. This component has
access to both the sending and receiving data struc-
tures and is responsible for handling and dispatching
all inter-NIC control messages.

The architecture of the SMS-NIC can be implemented on
a variety of platforms and languages. In the next section
we briefly overview the decisions made when implementing
the SMS-NIC and its integration with an existing mobile
system.

4. IMPLEMENTATION AND EVALUATION

We considered both C++ and Java Micro Edition (J2ME)
when implementing the SMS-NIC. C++ is an efficient lan-
guage for implementing low-level functionality and is sup-
ported on a range of mobile and embedded platforms; how-
ever, we chose J2ME because it is supported on both Linux
and many mobile platforms. Our implementation only uses
libraries that are present in both Java’s CLDC and Java
Standard Edition. The SMS-NIC therefore runs on most
systems, including most smartphones and most cell phones.
Platform specific functionality such as logging, compressing
data, visual feedback, and sending and receiving SMS mes-
sages are abstracted from the core of the SMS-NIC though a
series of abstract classes. This abstraction allows the SMS-
NIC to be ported to new Java platforms by simply writing
‘plugins’ specific to the new platform.

The current release of the SMS-NIC provides plugins for
both BlackBerry (CLDC) and Linux. This work is open
source under the Apache License and can be downloaded
from: hitp://blizzard. cs.uwaterloo.ca/eaoliver/sms.html .

We evaluate our implementation of the SMS-NIC by inte-
grating it with an existing mobile system: the Opportunistic
Connection Management Protocol (OCMP) [10]. OCMP is
a disconnection-tolerant, policy-driven session layer that is
used extensively in the KioskNet Project [4] to provide DTN-
like service to rural kiosks in developing regions. The OCMP



GPS position (1 msg)

2 KB RSA key (16 msgs)

4 KB BLOB (31 msgs)

SMS-NIC (sec) 37.32

97.23 212.11

39.18

Calculated average (sec)

103.64 193.47

Table 3: Performance of the SMS-NIC compared to expected values derived from our characterization.

client fragments data on behalf of disconnection-tolerant ap-
plications and transmits the fragments over multiple NICs
opportunistically. Fragmented data is then reassembled at
a central server, or prozry, on the Internet. The proxy then
forwarded the reassembled data to legacy servers on the In-
ternet. Our integration augments OCMP’s existing high-
delay, high-capacity “DTN-NIC” by providing a low-delay,
low-capacity control channel. Details of our integration with
OCMP can be found in [6].

We performed a series of trials to evaluate the perfor-
mance of the SMS-NIC while integrated with OCMP. We
configured OCMP to transmit all data over the SMS-NIC,
and scheduled files for upload on the client. OCMP read
the files and transferred them through the SMS-NIC, over
the cellular network to a receiving SMS-NIC on the proxy.
This trial was performed on the same Linux testbed as de-
scribed in 2.1.1. Table 3 illustrates the average performance
of several sample workloads. This table compares the SMS-
NIC with a calculated scenario with an average transmission
rate, median delay, and an average loss rate. The overhead
of OCMP was negligible. The SMS-NIC performed nearly
as well as the expected average derived from our character-
ization.

5. CONCLUSION

In this paper we have characterized the behaviour of SMS
when exchanging bursts of messages between tethered cell
phones and smartphones. We have used this characteriza-
tion to shape the design and implementation of an SMS-
based data channel for mobile systems operating in chal-
lenged network environments. Through integration with an
existing mobile system, we have shown that the SMS-NIC
has little operational overhead and is robust to the con-
ditions of the cellular network. The compact design and
lightweight implementation of the SMS-NIC made integra-
tion with OCMP effortless. As the cost of basic GSM service
continues to fall throughout the world, we strongly believe
that many mobile systems could benefit from the use of an
SMS control channel.
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