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Abstract: In this report we consider a mobile ad hoc network setting
where users of Bluetooth enabled devices meet and communicate op-
portunistically as when random people meet in a cafe, or researchers
meet at a conference. Ad hoc opportunistic contacts are built on the
basis of pre-defined relationships in online social networks. Our ap-
proach distinguishes itself from previous work in the area by three
characteristics: the removal of a need for a central server to conduct
exchanges, the focus on the transitive closure of relationships, and
the use of existing social networks as a reference point for under-
standing whether an exchange is desirable. We design MobiClique,
a social interaction communication software package that we imple-
ment on smartphones. We develop three applications: ad hoc social
connections, epidemic newsgroups and asynchronous messaging. We
describe our experience with 28 users at a networking conference. We
discover that despite the usual experimental hazards, MobiClique was
successful at building a local social network and delivering more than
300 user generated messages over 3 days through multi-hop epidemic
communication.



1. INTRODUCTION

Applications in the virtual world such as social net-
works and instant messaging have done much to remove
the tyranny of geography. Beyond friendship and ex-
changes between two parties (which we will refer to
as dyadic communication), virtual groups have prolif-
erated, creating communities centered around interests
varying from gaming to editing Wikipedia pages. De-
spite the increased power and reach of virtual commu-
nities, we postulate that the power of physical com-
munities based on physical contact and closeness will
continue to be an essential part of human relationships.
Further, physical communities have a different set of ca-
pabilities that are complemented by but not subsumed
by virtual communities. We can certainly email a buddy
in the virtual world who is in another country and a dif-
ferent time zone; but we can only share a meal, or go
to a play with a friend in the physical world.

Most users do belong to both virtual and physical
communities today but it is our belief that few net-
working experiences leverage both worlds. Rather than
look on virtual communities and physical communities
as competing entities, we prefer to think of them as com-

plementary entities.
This approach leads to interesting research problems.

First, technologies that were built to create virtual com-
munities must be extended to meet the constraints of
physical communities. Second, we need to understand
how virtual and physical communities can work together
to leverage each other so that users can move between
these two worlds in a way that enhances both worlds.

The MIT Serendipity project provided an interest-
ing answer to the first point above [4]. They observed
that the market for cell phones was growing exponen-
tially even in 2004; today cell phone sales are ten times
the sales of PCs and laptops, reaching 1 billion in 2006
alone 1. Further, while a certain fraction of the world
could probably not afford a PC, cell phones are becom-
ing ubiquitous in terms of coverage with people in devel-
oping countries. In addition, most cell phones have low
powered Bluetooth radio interface that provides cheap
(and essentially free) communication between two de-
vices that are reasonably close to each other. Serendip-
ity uses the cell phone as a bridge between the physical
and the virtual communities: the cell phones locate in-
dividuals in the user’s proximity and communicate with
a central server that contains information about users
and provides several methods of matchmaking. They
envisage applications in people meeting at conferences,
enterprise introductions, and dating services. Similar
ideas can be found in a number of commercial prod-
ucts.

In this paper, we extend the ideas of Serendipity in

1http://www.eetimes.eu/uk/197000427

several significant ways, and describe the experimental
results of a system (called MobiClique) designed around
our new ideas. To describe our extensions, we observe
that systems such as Serendipity have the following lim-
itations that we address.

• Use of a central server: All existing systems
use a central server that does the matchmaking
between compatible users. Connecting through a
central server is a serious restriction to the viral
nature of the system.

• Dyadic Communication: The net result of an
interaction is that two users are enabled to begin
a physical communication. While this is a good
thing, we believe it does not go far enough to build
what we call an “ad hoc community”.

• No platform for further development: While
the existing social networks are more mature and
hence possibly more open to the idea of open APIs,
the current generation of social networking soft-
ware is closed and likely to remain so for the near
future.

In this context, the contributions of this paper are as
follows:

Decentralized operation: MobiClique does not rely
on centralized server(s) for the discovery and interac-
tion process. We use direct peer interactions to create
a community. Such direct interactions are both cheaper,
more private, and may allow spontaneous and unfore-
seen interactions.

Leveraging an existing social network: Because
of the interface and issues of harassing one’s friends to
join a specific social network, our system bootstraps
from an existing social network. We choose to use Face-
book because (1) it is currently the one of the largest
and most popular online social network, and (2) its
APIs are publicly available. Note that while Mobi-
Clique is designed to take advantage of contact oppor-
tunities, we consider that users will connect periodically
to the virtual network (i.e. Facebook) to download rel-
evant aspects of the social network that allow discon-
nected operation, and to update their profile based on
the new social connections they have made with Mobi-
Clique.

Transitive closure of relationships: A MobiClique
opportunistic relationship is not dyadic. Instead, tem-
porary relationships create a graph just as in social net-
works. When two users decide to have an exchange,
MobiClique provides a copy of each user’s social com-
munity before the exchange. The result is that the com-
munity grows with each exchange.

Providing incentive: One of the arguments against
collaborative opportunistic forwarding is the one of in-
centive. Forwarding a message for someone unknown
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might be an issue as it drains batteries and uses phone
resource. In order to address this issue, all data trans-
mission are performed in a social network overlay, i.e. a
device only forwards data for friends, or for people who
share the same interests. We believe that this greatly
increases the likelihood that users will participate in
such a system.

Platform for development: While we have built
some applications on top of the community substrate,
we believe that an open API would be the basis for other
unforeseen applications to be written by other program-
mers. Furthermore, we use our platform to gather data
transfer statistics that can provide new insight into the
behavior and expectations for data communications in
an opportunistic networking environment.

Another major contribution is that we implement
MobiClique on Windows Mobile smartphones. We re-
port experimental analysis with 28 users attending a
networking conference (CoNEXT 2007 held in New York,
December 10-13, 2007), who use their smartphone to
make new friends, to exchange messages and to pub-
lish information using an ad hoc newsgroup application.
While one can theorize on the potential of new social
software applications, and on the various research issues
that they raise, experiments and careful measures are
needed to capture the efficacy of such interactions.

Our implementation and design choices are motivated
by social interaction among users. MobiClique is not
a final design, but a prototype with many imperfec-
tions that will be analyzed and discussed in this paper.
Once stable, MobiClique will be made available to re-
searchers, users, and application designers.

2. COMMUNICATIONS ARCHITECTURE

MobiClique is a platform to discover, share, and uti-
lize the “invisible” social networks that form around
every mobile device user. MobiClique mimics human
behavior in a social environment — look around, try
to identify people or points of interests, prioritize, and
finally build a social interaction with one or more peo-
ple. As with human interaction, some of these activities
might be “exclusive” of others.

The initial “look around” is implemented as a scan-
ning phase, where a device tries to identify all potential
candidates for social interaction. This defines the device
neighborhood. It is followed by the identification step
which consists of collecting the social profiles for each
device in the neighborhood, and selecting the subset of
candidates for social interaction. By a social profile we
refer to the set of information associated with a partic-
ular user such as the friendly name and other personal
details, a list of friends, the interests of the user and the
groups the user belongs to (compare to a user profile in
any common online social network).

The selection criteria for social interaction depends

mostly on friendship, common social interests and rela-
tionships in virtual communities. Prioritization is then
achieved using multiple criteria, including contact du-
ration and frequency, active applications, etc. Up to
this stage, only “social” information and contact statis-
tics have been exchanged. Content comes next, once a
“link” (and more exactly a peer network) has been es-
tablished between the user and its social ad-hoc neigh-
bors.

Our social networking protocol follows this progres-
sion of contact and information exchange, but uses op-
portunistic networking technologies to streamline the
process in order to meet new, previously unknown peo-
ple and exchange information with them in a variety of
scenarios.

2.1 A Social Networking Protocol

The first step in the social networking protocol is
to discover devices in the neighborhood. We use the
scanning features of Bluetooth to identify this neigh-
borhood. For each device found in the neighborhood,
Bluetooth returns a MAC address. In the following sec-
tions, the scanning node designates the node which has
just completed an entire Bluetooth discovery. A neigh-

boring node designates any one of the nodes that was
returned as a result of a discovery. Each participant in
the system has a globally unique identifier (GUID) that
represents that person in the social networking space.

Once the neighborhood is known, the scanning de-
vice attempts to establish a direct connection with each
neighboring node, in order to get its user’s social profile.
This is what we call the social metadata update phase.
Once completed, it is followed by an application data

exchange phase where the scanning device reconnects
with the neighboring devices to whom it has data to
send. Our social networking protocol executes this con-
tinuous loop of social metadata updates followed by ap-
plication data exchanges. The periodicity can be tuned
depending on various human and technology factors.

Note that every connection between two devices be-
gins with an authentication exchange. In the current
prototype, the authentication exchange is simply the
exchange of the device’s user GUID. If the GUID ex-
changed does not match the MAC address of the device,
then communication is aborted. However, in future im-
plementations it will be possible to match a user GUID
on multiple MAC addresses.

The following two subsections provide details about
the design of the social metadata update and applica-
tion data exchange protocols.

2.1.1 Social Metadata Update

During the social metadata update phase, the scan-
ning node receives metadata update from neighboring
devices. We chose to implement a one-way data trans-
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Algorithm 1 Social Networking Protocol

scan results ←Bluetooth MAC from last discovery
for neighbor in scan results do

changesguid ← Authenticate(neighbor)
if changes == True then

guids ← RequestInfo(neighbor)
for guid in guids do

if notInDb(guid) then
RequestFriendlyName(guid)

end if
end for

end if
end for
for neighbor in scan results do

dataList ← GetDataFor(neighbor)
if len(dataList) > 0 then

SendDataOffer(neighbor)
for item in datalist do

SendDataItem(neighbor, item)
end for
while StillConnected(neighbor) do

itemid ← ReceiveAck(neighbor)
MarkSent(itemid)

end while
end if

end for

fer as it significantly simplifies the complexity of the
implementation. However, there is no technical reason
for not performing a symmetric update.

During the authentication step described above, the
neighboring node returns to the scanning node a check-
sum representing its current social profile. If the neigh-
boring node has made changes to its profile since the
last contact with the scanning node, the checksum has
changed and the neighboring node sends its new profile
to the scanning node. If the checksum has not changed,
no update is performed.

2.1.2 Application Data Exchange

As before, this phase begins with an authentication
exchange, which is followed by a message indicating the
number of data items to be transferred. Then data
items are transferred one at a time; each data item
starts with a header that contains message payload size,
destination, and a unique message identifier followed by
the actual data chunk.

A policy must be chosen for determining the order
in which to connect to neighbors, as well as for select-
ing which items to send first. In the current prototype,
we connect to neighbors in the following order: friends,
shared interests, friends-of-friends. Data items are sim-
ply passed in a first-come first-sent manner. This policy
is simple and will have to be reviewed in future work in

the light of experimental observations.
As the neighboring node receives data items, it re-

sponds with an acknowledgment per data item. The
scanning node uses these acknowledgments to mark data
items in the database as successfully sent so it does not
unnecessarily re-transmit.

2.2 Applications

We have developed three applications to run on top
of the MobiClique architecture. The application frame-
work has been designed to make it easy for third party
developers to write new applications. We expect the
list of applications to grow once our API stabilizes and
is made public.

The first application simply displays to the user the
set of neighboring devices with their social profile and
provides an interface to manage the user’s social net-
work (i.e. add and remove friends, change interests).
The user is informed of the presence of a friend or a
potential new friend by a set of distinctive rings or vi-
brations. A potential new friend is currently defined as
a friend of a friend or as someone sharing at least one
interest in their social profile. This social network man-

agement application also provides the bridge between
the ad hoc social network stored within MobiClique and
an existing online social network such as Facebook.

We have deployed a Facebook plug-in in order to ini-
tialize a user’s social profile with realistic social infor-
mation. After downloading a user’s online social net-
work on the device, we utilize their Facebook ID (a
value globally unique to Facebook users) as their Mo-
biClique GUID. Similarly, Facebook users belong to
groups which are represented by fixed and unique GUIDs.
We use Facebook group GUIDs as a simple solution to
the complex problem of representing the taxonomy of
interest topics. During periods of Internet connectivity,
MobiClique users can synchronize their ad hoc social
network back to their Facebook account.

The second asynchronous messaging application was
developed to allow friends to message each other. This
application is modeled around a conventional instant
messaging application. It displays a contact list con-
taining the user’s friends. Selecting a friend opens a
window containing previously exchanged messages in
chronological order. Users may reply to a discussion
thread or create a new message destined to their friends.
Note that these messages can be relayed by intermedi-
ate node toward destination given that these interme-
diates nodes are either friends of the sender or of the
destination.

The third epidemic newsgroup application allows dis-
cussions among multiple participants, based on a spe-
cific topic of interest (e.g. newsgroup). It is best com-
pared to a mobile ad hoc “Usenet” 2. The user interface

2http://en.wikipedia.org/wiki/Usenet
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Figure 1: MobiClique Architecture Overview

is similar to the asynchronous messaging application,
but the message threads are displayed within the con-
text of a particular interest group, rather than for a
particular friend. The common interest is also used as
a message forwarding criteria.

3. SYSTEM ARCHITECTURE

In this section we present an overview of MobiClique’s
socially driven software architecture. The central com-
ponents of the architecture are the two databases, one
for contacts and social profiles, and one for application
data. We first describe these two “stores”, and then
we discuss the modules which manage and act upon
the data in these stores. The relationship between the
main components of the system is outlined in figure 1.

The Contact Store provides persistent storage of
device contact statistics, including MAC addresses for
each device seen, and the user metadata. The user
metadata (i.e. the social profile) consists of the user
name and some optional details such as an email, a
list of friends and a list of interests. The Contact Store
maintains relationships between the system-specific GUIDs
for users, friends, interests and applications. Internally,
MAC addresses are used to uniquely identify neighbor-
ing devices. The Contact Store can manage a user with
multiple devices, or with a device containing multiple
-interfaces, by associating the user’s GUID with each
MAC address. The Contact Store is updated during
the metadata update phase.

The Data Store is responsible for storing and pro-
viding efficient access to the data entering the system
through the Application Interface and data exchanged
between MobiClique devices. This store maintains data

items, which are autonomous pieces of data. Each data
item may have one or more destinations associated with
it. The Data Store also stores information about neigh-
bors who have already received a given item, and a TTL
for each item, to prevent redundant transfers.

The Link Controller is the lowest layer in the Mo-

biClique architecture. The Link Controller provides a
common interface for sending and receiving data across
a variety of network interfaces. The Link Controller
is responsible for periodically scanning for neighboring
devices or access points. This component receives data
on any of the available interfaces. The Link Controller
provides a common API for all network interfaces that
it supports and it hides network technology specifics
from the rest of the application. The Link Controller is
further discussed in [13].

The Network Message Dispatcher component re-
ceives interface agnostic messages from the Link Con-
troller and dispatches them to the proper MobiClique
component, after determining whether a message is a
control message or a data message. Data messages are
passed to the Application Interface, control messages
are passed to the Contact Manager.

The Contact Manager coordinates the communica-
tion and social metadata updates with the neighboring
devices. It uses the the Contact Store to persistently
store all friends, interests, and other meta data associ-
ated with encountered MobiClique users. The Contact
Manager maintains changes to the set of MobiClique
users in the current neighborhood which is used by other
components like the Forwarding Manager and applica-
tions.

The Forwarding Manager matches data to be for-
warded with potential destinations or next-hops, using
information found in the Contact Store. For each mes-
sage stored in transit, it makes a decision on what the
next hop should be, based on the current state of the
neighborhood. It also controls the aging of messages by
using a TTL. The Forwarding Manager has been de-
signed to support an arbitrary number of forwarding
algorithms; however, the current version of MobiClique
only supports epidemic forwarding within nodes who
are friends, friends of friends or share similar interests.

The Application Interface is designed so that de-
velopers can easily create new applications that use Mo-
biClique functionality. Each MobiClique application
has a unique GUID that it registers with the Appli-
cation Interface at startup. The application then sim-
ply communicates with the MobiClique system using
a loop-back socket. The Application Interface decides
how to handle local messages by using the application
GUID found in these messages.

We have implemented MobiClique in C++ to run on
a variety of mobile devices. Our current prototype runs
on Windows Mobile, but by abstracting the operating
systems APIs from the core application, our code can
easily port to Symbian and other C++ based platforms.
Our implementation is compact (less than 500 KB in
size), has a low memory footprint at runtime, modu-
lar design to support experimentation and growth, and
supports devices with a heterogeneous set of wireless
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capabilities.

4. EXPERIMENTS

This section begins with an outline of the research
objectives addressed by our experiments followed by a
description of the experimental conditions. We also de-
scribe some problems we encountered during the exper-
imental campaigns.

4.1 Objectives

The core objective of the MobiClique experiments is
to gain understanding of the interaction between our
social networking protocol, the users’ social behavior,
and our software implementation. From the system de-
sign point of view, we want to find the bottlenecks of the
system, and verify if our design choices and the selected
parameters are reasonable. We also try to understand
how users interact with the proposed applications, what
kind of an application interface is needed, and whether
the core system offers adequate support for ad hoc so-
cial networking.

Our architecture relies on Bluetooth for device dis-
covery and data communications. The basic device dis-
covery performance metric we look at is the number of
devices detected on each scan. The set of detected de-
vices will contain any Bluetooth devices in range. We
use the following terminology for the rest of the discus-
sion. We refer to MobiClique devices as internal and
the other non-experimental devices as external.

We define a contact as the time interval from the first
sighting to the last sighting that is followed by at least
two scans where the device is no longer present. In
other words, if a device is missed in one Bluetooth scan
but visible in the next scan, we consider that to be part
of a longer contact. We do this to overcome the inher-
ent limitations in Bluetooth device detection that can
occasionally miss devices in a scan though the device
is actually in proximity. This definition of contact was
also used in previous studies [6]. In addition to con-
tact times between a pair of devices, we measure the
inter-contact time which is the time interval between
two consecutive contacts.

Finally, we want to analyze the communications side
of the system, namely the opportunistic message for-
warding. It is important to understand how the epi-
demic message forwarding behaves in terms of message
delivery success ratios, delays and the number of hops
the messages take on their way to the destination(s).

4.2 Experimental Setup

We perform two separate experiments in conference
environments. The initial experiment is designed to
gain more insight into the ad hoc Bluetooth commu-
nications and design choices. It was performed with a
subset of the MobiClique architecture, namely the Link

Controller and a simple test driver on top of it.
We scan for Bluetooth contacts every two minutes

for a duration of 10.24 seconds as recommended in the
Bluetooth standard [1]. Laboratory tests have showed
that that this scan duration is sufficient to detect all
neighboring devices within a 10 meter radius [13]. The
scanning interval of two minutes is chosen based on the
previous human mobility experiments [6]. Also it is long
enough to allow devices to transfer a reasonable amount
of data (approx. 4 MB) and short enough that it does
not waste energy by doing redundant scans [13].

After the discovery, we initiate data transfers between
detected devices in two modes: sending 50 KB of ran-
dom data to each contact, or sending only 1 MB of
random data to a single contact. We measure the suc-
cess rates and data throughput in each mode both on
the client and server sides. The application requires no
user interaction and the participants are simply asked
to keep the devices charged and with them all the time.

In the second experiment we deploy the complete Mo-
biClique architecture with all three applications. The
implementation follows the proposed architecture ex-
cept for the integration with Facebook. We disable this
feature for three reasons. First, we found that down-
loading from the Facebook API is very slow due to many
independent queries on a user’s social network. Sec-
ond, requiring that participants of our study load their
profiles from Facebook also complicates the experiment
process in return for little research value. Third, a sim-
ple crawl of Facebook revealed that there was little in-
tersection between the Facebook profiles of conference
participants.

Instead, we initialized the identity of each participant
from a pre-defined list of participants the first time that
the MobiClique application runs on a device. The ex-
periment participant is then asked to select her friends
from the same list. Limiting the list of friends to the
set of conference participants is obviously not represen-
tative of their true social network; however, we believe
that the social properties of our experiment are still
valid.

Finally, without Facebook integration, we need a means
for users to explicitly express their interests. We include
an additional screen within MobiClique that allows a
user to select from many preconfigured interest groups.
These include research topics and various social topics.
As in Facebook, users are free to add or remove friends
and change their interest topics at any time.

Once the user has manually boot strapped her social
network, MobiClique begins to execute the social com-
munications algorithm. We also include an additional
background messaging application for the purpose of
experimentation. This dummy application runs on each
device and generates random data in 50 KB chunks ev-
ery 10 minutes. The destination for each data item
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is selected at random from each user’s set of interests.
Therefore, this application behaves like the newsgroup
application, but the data is simply not visible to the
user. This application guaranteed that even if users did
not socialize, we would collect experimental data. Mes-
sages generated by the dummy application were granted
a TTL of one hour to prevent messages from building
up and flooding the ad hoc network. Having a one
hour TTL also differentiated the dummy application
from the asynchronous messaging and newsgroup ap-
plications, which had a TTL of one day.

MASS 2007 CoNEXT 2007
Time Oct 8-11 Dec 10-13
Devices 29 28
Trace (offline) 2.8d (27.1h) 2.2d (32.1h)
Unique Bluetooth 990 2024
devices 29 (internal) 28 (internal)
Bluetooth contacts 21804 15109

11702 (internal) 10143 (internal)

Table 1: The experiments.

The first experiment was performed during MASS
2007 (Pisa, Italy) and the second at CoNEXT 2007
(New York, USA). We distributed around 30 Windows
Mobile smartphones to a preselected set of participants
on the first day of the conference and collected the de-
vices back in the end of the conference. Table 1 sum-
marizes the basic experiment setup and the collected
data set characteristics. Both experiments lasted for
three days. We define the offline time as the time dur-
ing which (within the full trace time) the device was
not running the application. The offline times result
mainly from application crashes and depleted batteries.
To compare the scope of the collected data, we calcu-
late the number of unique Bluetooth devices seen and
the number of Bluetooth contacts. At MASS we detect
far less Bluetooth devices than at CoNEXT; however,
the total number of contacts is higher at MASS. This
is mainly explained by the different lengths of the col-
lected traces and some issues in Bluetooth device dis-
covery discussed further in 5.

4.3 Experimental Hazards

Field trials of experimental applications are often vic-
tim to unforeseen conditions; our experiments were no
exception.

Clock synchronization: Clock synchronization, a
property we take for granted in connected environments,
can have a significant impact on the post-experiment
analysis of experimentation in a mobile environment.

We began each experiment by synchronizing the de-
vice clocks to a single laptop when installing the Mobi-
Clique application. Despite manually configuring each
phone, when analyzing the data we found that many de-
vices were not time synchronized. Following the MASS
experiment we found that mobile devices self synchro-

nize with one of two sources: the cellular network and
users’ own laptops. For the convenience of not carry-
ing two cell phones, several participants installed their
own SIM cards in the devices; it caused several devices
to synchronize their clocks with the connected cellular
network. Other users in the experiment paired their de-
vices with their Windows laptops that had ActiveSync
(Microsoft’s smartphone synchronization software) in-
stalled, which caused the device’s time to synchronize
to the time on the laptop.

As expected, mobile devices at the CoNEXT experi-
ment were returned with non-synchronized clocks. We
were able to reverse the clock skew through a series of
scripts that associated sending and receiving times be-
tween pairs of devices. We expect clock synchronization
to be a common problem in mobile experiments.

Battery depletion: Frequent Bluetooth scanning,
data transfers, and frequent SD card I/O caused a sig-
nificant drain on the battery. In the MASS experi-
ment, despite verbally informing participants to charge
their devices nightly, most devices were not charged
frequently enough throughout the experiment creating
long offline periods. For the CoNEXT trial we included
a daemon application that monitored the battery level
and reported warnings to the user. The warnings pro-
duced a vibration and audio alert, and displayed a mes-
sage in the foreground of the display. The warnings
became increasingly disturbing as the battery level fell
below 10%.

User interface: One of the goals of the second ex-
periment was to include real applications to experiment
with real traffic and to encourage active user partici-
pation. However, due to the prototype nature of the
application, some aspects of the user interface were still
unfinished. This affected the user activity and some
of the features, like the messaging application and the
friend notifications were not fully understood by the
users.

5. SYSTEM OBSERVATIONS

We begin the analysis of our experiment in mobile so-
cial networking with a discussion of system attributes
that affect our study. We find that the introduction of
real applications has a significant impact on the perfor-
mance of MobiClique. We discuss how using Bluetooth
have an adverse affect on mobile social applications. We
also look into the impact of the database design on the
performance of the system.

5.1 Bluetooth Limitations

The use of Bluetooth has distinct advantages. Blue-
tooth is short range, which conveniently limits the so-
cial context to devices within approximately 10 meters.
Bluetooth data rate is slow compared to 802.11 (approx-
imately 50 KB/s), but it is sufficient for many practical

7



applications. Finally, Bluetooth consumes little power
and can run continuously on most mobile devices [2].
Unfortunately, Bluetooth, as a cable replacement tech-
nology, was not designed for applications of the kind
we envisage. Bluetooth devices discover each other by
sending and receiving inquiry beacons. Once a device
discovers neighbors, it switches to the “page” state to
setup a new connection and share setup information.
Pairs of devices subsequently move into the “connected”
state to exchange data. While in the connected state,
Bluetooth inquiries by neighboring devices are unan-

swered causing physically adjacent devices to be mutu-
ally non-discoverable.

This limitation of Bluetooth affects our application
by preventing many opportunistic connections between
socially connected users. We will see how these limita-
tions impacts our experience in Section 6.2. One solu-
tion that we plan to implement is known as Bluetooth
Pooling [9]. It is a technique for propagating presence
among a set of neighboring Bluetooth devices. Each
device stores the set of MAC addresses found during
a inquiry scan and relays that set to each neighboring
device that it connects to.

5.2 Database Design

Mobile devices are commonly characterized by their
limited battery life, storage, RAM, and CPU. The in-
tegration of a database has several distinct advantages
in the mobile environment. It provides guarantees on
consistency of persistent data in the midst of power fail-
ure. Storage costs are minimized using efficient data
structures, and when executing a query, most modern
databases can adapt to low memory conditions to avoid
having to later abort a transaction. However, when de-
ploying a database on a mobile device, the database
schema and subsequent queries can have a significant
impact on the performance of the application during
opportunistic connections.

In the data exchange phase of our social network-
ing protocol, the Data Store is queried three times to
find data to forward to a MobiClique device. On av-
erage, we found that finding an item in the database
took around 1.4 seconds and inserting an item in the
database (50 KB) took approximately 0.6 seconds. Al-
though short in duration, these times were alarming
considering that none of the databases grew to more
than 41 items (approx. 2 MB worth of data). We ex-
pected lookup and insertion times for this small data
size to be much lower. Using a simple microbenchmark
that reproduced the behavior of the ad hoc newsgroup
application, we observed that finding an item rose to a
staggering 90 seconds when querying a database with
575 data items! This result was consistent across both
the devices internal Flash memory and a removable mi-
cro SD card.

The poor performance is partly a consequence of the
way MobiClique searches for data items. In each selec-
tion query, we retrieve a set of data items for a given
set of destinations. The selection query is further con-
strained to items that have not been previously sent to
the neighboring device. This prevents neighbors with
long or frequent contacts from exchanging redundant
data. This highly functional query consists of an ex-
pensive four-way join over three database tables. By
removing the support for sending a single data item to
multiple destination addresses, the complexity of the
selection query would dramatically shorten, and conse-
quently the time spent on database operations would
be shorter.

During CoNEXT we monitored the available RAM
on each device. Throughout the experiments our appli-
cation used approx. 0.4 MB of the available memory.
Globally, the average memory usage across all devices
was around 28.1 MB (64.5%). We found that many
participants used the devices to check websites, fetch
emails, and take photos with the built in camera. The
use of applications external to MobiClique was visible
as memory allocation spikes. A key result of this ob-
servation is that despite heavy wireless I/O, frequent
use, and an application exchanging large amounts of
dummy data, the device had large amounts of unused
memory. We believe that storing the table of sent data
items (information that is not required to be persis-
tent) in memory or caching subsets of the other tables
would provide a significant performance gain compared
to the current solution where everything is stored in the
database.

Fortunately, short message TTLs coupled with lim-
ited workload prevented the design of our database from
affecting the experiment. However, more sophisticated
applications sharing larger amounts of data would quickly
degrade in performance using the current design. We
are confident that a simple redesign to the query struc-
ture would improve matters greatly.

6. COMMUNICATIONS PERFORMANCE

In this section we provide a detailed analysis of Mo-
biClique. We begin the discussion by application usage.
We then consider the three phases of the social network-
ing protocol: the detection of contacts and the initial
connection setup for the metadata update (Section 6.2),
and the message forwarding (Section 6.3).

6.1 Application Usage

In this section we overview the MobiClique applica-
tion usage during the CoNEXT experiment. We make
no claim that our application usage is representative of
how mobile users would use a larger-scale social mobile
network. However, as a first experiment collecting such
a data, we think this sets the context for understand-
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ing the detailed performance analysis presented in the
following sections.

We conducted a small survey on the usage of online
social networking applications and opinions on ad hoc
social networking among the participants. Out of the 28
participants, 24 confirmed having one or more accounts
in online social networks. Facebook was the most pop-
ular service with 16 users, followed closely by LinkedIn
with 13 users. Orkut was also mentioned a few times.
Only 4 participants were not using any online social
networking application. We think that the fact that
most of the experimentalists were familiar with some
online social networking service, helped them to easily
understand the idea and goals of our applications.
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Figure 2: Most popular interest groups over
time

When looking at the usage of the social networking
application, we observe that 50% of the participants did
not add friends at the initialization. The average num-
ber of initial friends was 4.23, some people having up
to 17 friends initially. During the course of the exper-
iment, the friend addition rate is 3.61 new friends per
participant. The rate is affected by the small set of par-
ticipants and by some user interface issues that lowered
the user activity. Similar to the friends list, users could
select and modify a set of interests. The predefined list
included interests varying from conference topics to so-
cial activities and feedback. Figure 2 shows the number
of users having selected an interests over the time. The
figure includes only the most popular interest groups.

The asynchronous messaging application and the news-
group application record 302 user created messages dur-
ing the experiment. Of these messages 181 were des-
tined directly to a friend and 121 to an interest group.
The message generation over time is shown in Figure 3.
Interestingly the most active discussion groups are not
exactly the same as the most popular groups in terms
of the number of users. Figure 4 lists the most active
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Figure 3: User generated messages per hour

1. MobiClique discussion (23)
2. Network protocol evaluation (21)
3. MobiClique feedback (17)
4. Networked games (13)
5. Testing (9)
6. Thoughts on social-mobile networking (6)
7. Beer drinkers anonymous (5)
8. Wireless and mobile networks (4)
9. Network protocol implementation (3)
10. Ad hoc and sensor networks (3)

Figure 4: Most active interests groups

discussion topics (number of sent messages in parenthe-
sis). The MobiClique “feedback” and “testing” groups
receive a lot of messages followed closely by the more
popular technical topics.

We found that 64% of the asynchronous messages
reach their destination while only 48% of the news-
group message do. The better success rate of the asyn-
chronous messaging could be partly due to the fact that
many people tested the system with their friends by
sending messages to each other while both users were
physically in contact and could verify that the message
was indeed delivered. The newsgroup messages success
rate is only a rough (and probably pessimistic) esti-
mation since the users could change interests over the
course of the experiment. We count the success rate
based on the people interested on the topic at the mes-
sage creation time.

6.2 Contact Detection

We start the analysis by looking at the number of de-
vices discovered during the Bluetooth scans. The dis-
tribution of detected devices in the MASS experiment
is shown in Figure 5 and at CoNEXT in Figure 6. The
distribution is calculated over the working hours (from
9am to 6pm). By looking at the median line, we can
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Figure 5: Discovered devices during a scan
(MASS)
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Figure 6: Discovered devices during a scan
(CoNEXT)

see that at MASS in 50% of the scans we see at most
4 Bluetooth devices, of which only 1 is internal. This
together with the fact that overall we detect less unique
Bluetooth MAC addresses at MASS than at CoNEXT
(see Table 1) implies that there were few external de-
vices around and that the internal nodes were sparsely
located. On the other hand, at CoNEXT we observe
higher device density: for example looking at the me-
dian line again, 50% of the scans detect around 7 de-
vices, about 2 of them being internal MobiClique users.
The low number of internal device sightings is still sur-
prising considering the environment where most of the
devices were located in a single room during the con-
ference hours. We explain this lower rate by the limita-
tions of Bluetooth device discovery that were discussed
in 5.1.

For the CoNEXT experiment, we calculate also the

number of internal nodes sharing at least one inter-
est with the scanning node, and the number of friends
and friends of friends (FoF) among the scanned nodes.
While these numbers present information that we ex-
tract from the collected data after the experiment, they
still give an idea of the potential of the ad hoc social
network formed in the experiment. As expected, due
to the small set of nodes and the limited list of interest
groups, we detect almost everytime a node that shares
an interest with the scanning node and allows thus a
data transfer to take place if the node has matching
messages available. A friend was scanned in the neigh-
borhood in 30% of the time, and a friend of a friend in
40% of the scans. These are an encouraging numbers
but emphasis the need for improving the detection rate
as we still miss many opportunities.
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Figure 7: Bluetooth contact times
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Figure 8: Bluetooth inter-contact times

Two important parameters for opportunistic network-
ing are the contact time and the inter-contact time be-
tween a pair of nodes [6]. Figure 7 and Figure 8 illus-

10



trate the differences in contact and inter-contact time
distributions in the MASS and CoNEXT experiments.
In both experiments we see that approximately 50% of
contacts last around 2 to 4 minutes. This correspond to
a device being seen only in one or two scans. The con-
tact times follow the same general trend as presented
in [6]. However, in both the MASS and CoNEXT re-
sults, we observe that the contact times are significantly
lower in particular towards the tail of the distribution.
While the previous experiment report contact durations
up to 1 day or more, in our data the longest contacts
are well below that (2 to 10 hours). We attribute this
decrease in contact time to application activity (as dis-
cussed in 5.1). From the inter-contact time distribution
we can see that the median time is around 10 minutes
and the tail goes up to the experiment duration of three
days. The inter-contact time patterns are similar in
both experiments and follow the power law shape ob-
served and analyzed in previous work [6].
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Figure 9: Bluetooth connections over time

Figure 9 shows the evolution of the average num-
ber of nodes seen during a scan, the number of Mobi-
Clique participants seen during a scan, and the number
of nodes for which a successful socket connection was
made before the next scan, averaged over 30 minute in-
tervals. On the right side of the same figure, we show
the connection success rates. On average, we manage
to successfully connect to around 50% of the internal
nodes we scan. At night time the success rate goes
up to 100%; this could result from two experimental-
ist sharing a hotel room and detecting each other in an
almost interference free environment.

By looking at this graph, we can also observe a visible
correlation between socket connection success and the
number of detected devices: the more devices we detect,
the less successful we are in establishing a connection.
This observation leads us to propose that systems such
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as MobiClique should be more aggressive in attempt-
ing to make connections when there are more devices
present. Our belief is that most of the failures to con-
nect to a device are random and would not persist if
we tried to connect again. Additionally, we think that
we could improve the socket establishment success rates
by exchanging further information about the adjacent
nodes beyond the one hop neighbors and the neighbor-
ing nodes’ activity in order to make smarter decisions
about when and to whom to connect.

A successful socket connection is followed by the so-
cial metadata update phase. It takes around 20 seconds
per scan round. The associated control data overhead
is negligible as can be seen from Figure 10. The picture
shows the amount of application data send and received
together with the total control traffic. The tiny black
area at the bottom of the bars represents the number of
control bytes (authentication and social metadata traf-
fic) sent and received. At glance this figure also shows
qualitatively that the system is balanced. Each node
sends and receives a fairly equal amount of data, some
nodes being more popular (or just more online) than
the others.

We believe that both the discovery and the connec-
tion establishment success rates could be improved by
exchanging more detailed context information (such as
the neighborhood and node activity) between the nodes.
In addition, to increase the number of successful con-
nections, nodes should try to connect each neighbors
multiple times after it has been scanned.

6.3 Message Forwarding

The fundamental evaluation metrics for most net-
working systems are the message delivery success rate
and the delay associated with message delivery. In this
section we analyze these metrics. We separate the user
generated messages for interest groups and friends, and
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the dummy application messages. The results for the
various message types are remarkably different mainly
due to the different TTL values (one hour for dummy
messages and 24 hours for the messaging application).
Also, the number of destinations (one for friend mes-
sages and several for interest based messages) explains
some of the differences. Over the course of the experi-
ment we record 302 user generated messages and around
6500 dummy application generated messages.
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Figure 11: Delivery success rate for interest
messages

Figure 11 shows the CDF of the message delivery suc-
cess rates for interest based messages. In this figure, the
x-axis represents the proportion of destinations reached
by a message. The y-axis represents the proportion of
messages generated that reached a proportion of des-
tinations less than or equal to the value indicated on
the curve. The success rate of the dummy application
messages is still quite poor; around 70% of the mes-
sages fail to reach any interested node, and majority of
them reach only 50% of the destinations. This can be
explained by the short TTL and the way we select the
message destinations. The dummy application would
send data to a random interest group within the user’s
interests. The destination could thus be one of the not
so popular groups, and the set of potential receivers
would be very small. The newsgroup messages have a
higher success rate. Half of the messages reach at least
50% of the intended destinations and the maximum suc-
cess ratio goes over 80%. The asynchronous messages
(not in the figure) have a success rate of 64%.

Figure 12 plots the message delay to reach a certain
number of nodes for the dummy application, the friend
messages and the interest groups. We calculate the de-
lay as the difference between the time a message is gen-
erated, and the time it is received by an interested recip-
ient. So, messages destined for an individual have one
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Figure 12: Message delays to reach a number of
nodes

delay associated with them, but messages destined for
an interest group have multiple associated delays (one
per group member). The dummy application delays
stay around one hour on average (corresponds the ac-
tual TTL) while the friend and interest based messages’
delays seem to grow steadily up until around one day
(the TTL) as the messages spread to a larger number
of nodes. We can see clearly that the one hour TTL is
short and the dummy application messages never reach
more than 9 nodes at maximum while the messages with
larger TTL reach up to 16 nodes. The big difference in
reaching even a smaller number of nodes between the
two types of messages is most likely due to the fact that
the number of dummy messages generated is an order
of magnitude larger than the user generated messages.
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Figure 13: Message delay distribution

Figure 13 shows the delay distributions for all the
three applications generating message traffic. The dummy
application shows a nearly uniform distribution of de-
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lays up to one hour. For the friend and interest based
messages we observe generally larger delays as was shown
already above. There are some messages for each ap-
plication that seem to pass the TTL. This results from
the TTL being an absolute value and that the fact that
devices were not time synchronized during the whole
experiment; devices whose clock was behind the mes-
sage generating node would keep forwarding the mes-
sage longer that the intended TTL. In addition, the ex-
pired messages were purged from the Data Store only
upon a new incoming message. Thus it was possible
that a device could have forwarded stale messages even
after the TTL was reached.

The figure shows an interesting division in delays for
user generated messages – around 40% of the messages
have a delay equal or less than 5 hours, and another 40%
go over 16 hours. This can be explained by the diurnal
behavior of the participants. Messages generated during
the morning hours propagate until the end of the day
(the first part of the curve) and expire before the next
day. Those messages that are generated very late in the
afternoon show up in the beginning of the curve, and
again in the end as they persist in the devices over the
night and are forwarded further the next day.

Next, we take a look to the forwarding paths. In Fig-
ure 14 we show the distribution of the path lengths for
all the messages that were sent at least over one hop.
The dummy application messages reach their destina-
tions mostly over one hop (80%), the longest path be-
ing 4 hops. The user generated messages follow slightly
longer paths in general. The average path length is be-
tween one and two hops, and the longest path we record
in this experiment is five hops. This observation seems
to align with recent work on the diameter of opportunis-
tic networks [3]. We also think that it is an interesting
result that even in a setting such as a conference envi-
ronment where a limited number of devices communi-
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cate within a small area, the fastest way to reach some
of the destinations is not always simple direct delivery;
thus more advanced forwarding algorithms are needed.

Finally, we look into the message paths and the corre-
sponding delays in Figure 15. Most of the observations
that were made about the message delay distributions
above are also visible in this graph: the message con-
centration at the short delays (≤1 hour) consists of the
dummy application messages and the rest is user gen-
erated traffic. Similarly, the gap in messages between
6 and 10 hours and delays larger than the TTL were
discussed above. In general, there seems to be no clear
correlation between the length of the path and the time
it takes to forward the message over the path. Conse-
quently, we propose that the TTL could be based on
the number of hops the message has taken instead of
the time. This matches the observations made in [3]
where the authors argue that discarding messages after
a relatively small number of hops does not decrease the
performance considerably.

This section showed a clear relation between the mes-
sage TTL and the message forwarding performance.
The one hour TTL of the dummy application is clearly
too short. The asynchronous messaging and newsgroups
perform better as they have a longer TTL. However,
these observations are not enough to determine an op-
timal TTL value which depends on multiple parame-
ters not evaluated in this experiment. However, the
next MobiClique communication protocol will experi-
ment with a hop-count TTL.

7. RELATED WORK

Pocket Switched Networks (PSN) [14] is a communi-
cation paradigm that exploits contacts between mobile
devices to transfer data in a store-carry-forward fashion.
PSN falls under the more general concept of delay or
disruption tolerant networking [5]. To our knowledge,
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we are the first ones to implement and evaluate a com-
plete opportunistic communications system prototype
with a set of applications. The Haggle Project and the
DTN Research Group have produced PC-based refer-
ence implementations. There have been efforts to port
the DTN reference implementation to a mobile plat-
form (Symbian) [8]; however, this is only a preliminary
solution.

Spurred by the exponential growth of online social
networks, social networking is rapidly emerging as a
hot research topic. MIT’s Serendipity project [4] is one
of the first projects exploring the mobile aspects of this
topic. There have been many socially motivated tech-
nologies since Serendipity that are based on Bluetooth
proximity detection. Notably, Nokia Sensor [12] is de-
signed to detect neighboring devices and exchange mes-
sages and client defined profiles with them. The Wire-
less Rope project [10] used Bluetooth device detection
to analyze the social context of the mobile devices and
its affects on group dynamics. Cityware3 from the Uni-
versity of Bath has explored problems related to “mo-
bile computing landscape” [11]. They have developed
a mobile application to share context (address books)
and build common ground between nearby users [7].

Recently, most of the work in the mobile social do-
main has been commercial. Dodgeball4 and MeetMoi5

allows users to signal a central server with their cur-
rent location. The system then notifies nearby friends
and/or crushes in the area. Jaiku Mobile6 allows mobile
users to share location, availability, and current status.
Twitter7 allows users to inform their social communi-
ties about their current activity. Finally, LoveGety8, a
Japanese solution to the mate finding problem, allows
users to find mates (contacts that match a desired pro-
file) through opportunistic Bluetooth contacts.

8. CONCLUSION

MobiClique is ad hoc social software designed to build
on virtual communities ala Facebook in order to fa-
cilitate the construction of opportunistic communities
exploiting physical contacts made through cell phones.
It brings together for the first time the strengths and
complementary features of physical and virtual commu-
nities, starting form the observation that it is easier to
meet potential friends in the street that in front of a
computer.

We have designed and prototyped MobiClique on Win-
dows Mobile smart phones, with all the imperfections
that one might expect from a first prototype. Around 30

3http://www.cityware.org.uk/
4http://www.dodgeball.com/
5http://www.meetmoi.com
6http://www.jaiku.com/mobile/
7http://twitter.com/
8http://www.wired.com/culture/lifestyle/news/1998/05/12342

devices were distributed for experimentation, together
with three applications during a networking conference.
The first nice result is that it worked: messages were
exchanged through multiple hops, and users made new
friends among conference participants. The data set we
have collected has similar properties when compared
to previously analyzed datasets in term of contact and
inter-contact times, and network diameter.

We extracted multiple lessons that we will to use to
improve the next implementation: (1) we must sim-
plify the query process as our system spends too much
time accessing content in the memory, (2) we must im-
prove the scanning and connection techniques, and (3)
we need to add a TTL hop count for all messages. This
first experiment will also help us to improve the func-
tionality and the usability of the GUI.

We expect the next experiment to involve many more
participants. The next version of MobiClique will be
made publicly available in order to build a community
of users, design more applications, and to collect more
data to support research in ad hoc opportunistic com-
munication. We hope MobiClique will foster the vision
of going beyond building ad hoc contacts to building ad
hoc communities that are enriched by a new generation
of ad hoc applications.
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